Skip to main content

Part of the book series: Springer Series in Bio-/Neuroinformatics ((SSBN,volume 1))

  • 4234 Accesses

Abstract

Computing alignments of proteins based on their structure is one of the fundamental tasks of bioinformatics. It is crucial in all kinds of comparative analysis as well as in performing evolutionary and functional classification. Whereas determination of sequence relationships is well founded in statistical models, there is still considerable uncertainty over how to describe geometric relationships between proteins. Continuous growth of structural databases calls for fast and reliable algorithmic methods, enabling one to effectively compute alignments of pairs and larger sets of protein molecules. Although such methodologies have been developed over the past two decades, there exist so-called “difficult similarities” which may include repeats, insertions or deletions, permutations, and conformational changes. A brief overview of existing methodologies with emphasis on different approaches to decomposition of structures into smaller fragments is followed by a presentation of a formalism of local descriptors of protein structures. A formal definition of the problem of computing optimal alignments accommodating aforementioned difficulties is presented along with an analysis of the computational complexity of its important variants. Examples of “difficult similarities” and practical aspects of protein structure comparison are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandrov, N.: SARFing the PDB. Protein Engineering 9(9), 727 (1996)

    Article  Google Scholar 

  2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25(17), 3389–3402 (1997)

    Article  Google Scholar 

  3. Anand, B., Verma, S.K., Prakash, B.: Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res. 34(8), 2196–2205 (2006)

    Article  Google Scholar 

  4. Bachar, O., Fischer, D., Nussinov, R., Wolfson, H.: A computer vision based technique for 3-D sequence-independent structural comparison of proteins. Protein Eng. 6(3), 279–288 (1993)

    Article  Google Scholar 

  5. Barrientos, L.G., Louis, J.M., Botos, I., Mori, T., Han, Z., O’Keefe, B.R., Boyd, M.R., Wlodawer, A., Gronenborn, A.M.: The domain-swapped dimer of cyanovirin-N is in a metastable folded state: reconciliation of X-ray and NMR structures. Structure 10(5), 673–686 (2002)

    Article  Google Scholar 

  6. Berbalk, C., Schwaiger, C.S., Lackner, P.: Accuracy analysis of multiple structure alignments. Protein Sci. 18(10), 2027–2035 (2009)

    Article  Google Scholar 

  7. Bewley, C.A., Gustafson, K.R., Boyd, M.R., Covell, D.G., Bax, A., Clore, G.M., Gronenborn, A.M.: Solution structure of cyanovirin-N, a potent HIV-inactivating protein. Nat. Struct. Biol. 5(7), 571–578 (1998)

    Article  Google Scholar 

  8. Bystroff, C., Baker, D.: Prediction of local structure in proteins using a library of sequence-structure motifs. J. Mol. Biol. 281(3), 565–577 (1998)

    Article  Google Scholar 

  9. Daniluk, P., Lesyng, B.: DAMA: a novel method for aligning multiple protein structures. In: Multi-Pole Approach to Structural Biology Conference, Warsaw, Poland (2011)

    Google Scholar 

  10. Daniluk, P., Lesyng, B.: A novel method to compare protein structures using local descriptors. BMC Bioinformatics 12(1), 344 (2011)

    Article  Google Scholar 

  11. Daniluk, P., Dziubiński, M., Lesyng, B., Hallay-Suszek, M., Rakowski, F., Walewski, Ł.: From experimental, structural probability distributions to the theoretical causality analysis of molecular changes. Computer Assisted Methods in Engineering and Science 19(3), 257–276 (2012)

    Google Scholar 

  12. Dobbins, S., Lesk, V., Sternberg, M.: Insights into protein flexibility: The relationship between normal modes and conformational change upon protein–protein docking. Proceedings of the National Academy of Sciences 105(30), 10,390 (2008)

    Article  Google Scholar 

  13. Dror, O., Benyamini, H., Nussinov, R., Wolfson, H.: MASS: multiple structural alignment by secondary structures. Bioinformatics 19(suppl. 1), 95–104 (2003)

    Article  Google Scholar 

  14. Elias, I.: Settling the intractability of multiple alignment. J. Comput. Biol. 13(7), 1323–1339 (2006)

    Article  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-completeness. A Series of books in the mathematical sciences. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  16. Gerstein, M., Echols, N.: Exploring the range of protein flexibility, from a structural proteomics perspective. Current Opinion in Chemical Biology 8(1), 14–19 (2004)

    Article  Google Scholar 

  17. Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising similarities in structure comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)

    Article  Google Scholar 

  18. Grishin, N.V.: Fold change in evolution of protein structures. J. Struct. Biol. 134(2-3), 167–185 (2001)

    Article  Google Scholar 

  19. Guerler, A., Knapp, E.W.: Novel protein folds and their nonsequential structural analogs. Protein Sci. 17(8), 1374–1382 (2008)

    Article  Google Scholar 

  20. Holm, L., Park, J.: DaliLite workbench for protein structure comparison. Bioinformatics 16(6), 566–567 (2000)

    Article  Google Scholar 

  21. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233(1), 123–138 (1993)

    Article  Google Scholar 

  22. Ilyin, V.A., Abyzov, A., Leslin, C.M.: Structural alignment of proteins by a novel TOPOFIT method, as a superimposition of common volumes at a topomax point. Protein Sci. 13(7), 1865–1874 (2004)

    Article  Google Scholar 

  23. Jung, J., Lee, B.: Protein structure alignment using environmental profiles. Protein Eng. 13(8), 535–543 (2000)

    Article  Google Scholar 

  24. Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica. Section A 32(5), 922–923 (1976)

    Article  Google Scholar 

  25. Kabsch, W.: A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica. Section A 34(5), 827–828 (1978)

    Article  Google Scholar 

  26. Kawabata, T., Nishikawa, K.: Protein structure comparison using the markov transition model of evolution. Proteins 41(1), 108–122 (2000)

    Article  Google Scholar 

  27. Kervinen, J., Tobin, G.J., Costa, J., Waugh, D.S., Wlodawer, A., Zdanov, A.: Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J. 18(14), 3947–3955 (1999)

    Article  Google Scholar 

  28. Konagurthu, A.S., Whisstock, J.C., Stuckey, P.J., Lesk, A.M.: MUSTANG: a multiple structural alignment algorithm. Proteins 64(3), 559–574 (2006)

    Article  Google Scholar 

  29. Liepinsh, E., Andersson, M., Ruysschaert, J.M., Otting, G.: Saposin fold revealed by the NMR structure of NK-lysin. Nat. Struct. Biol. 4(10), 793–795 (1997)

    Article  Google Scholar 

  30. Lindqvist, Y., Schneider, G.: Circular permutations of natural protein sequences: structural evidence. Curr. Opin. Struct. Biol. 7(3), 422–427 (1997)

    Article  Google Scholar 

  31. Mavridis, L., Ritchie, D.: 3D-blast: 3D protein structure alignment, comparison, and classification using spherical polar fourier correlations. In: Pacific Symposium on Biocomputing, vol. 2010, pp. 281–292 (2010)

    Google Scholar 

  32. Mayr, G., Domingues, F.S., Lackner, P.: Comparative analysis of protein structure alignments. BMC Struct. Biol. 7, 50 (2007)

    Article  Google Scholar 

  33. Menke, M., Berger, B., Cowen, L.: Matt: local flexibility aids protein multiple structure alignment. PLoS Comput. Biol. 4(1), e10 (2008)

    Article  MathSciNet  Google Scholar 

  34. Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equation of state calculations by fast computing machines. The Journal of Chemical Physics 21(6), 1087 (1953)

    Article  Google Scholar 

  35. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)

    Article  Google Scholar 

  36. Niemann, H.H., Knetsch, M.L., Scherer, A., Manstein, D.J., Kull, F.J.: Crystal structure of a dynamin GTPase domain in both nucleotide-free and GDP-bound forms. EMBO J. 20(21), 5813–5821 (2001)

    Article  Google Scholar 

  37. Orengo, C.A., Taylor, W.R.: SSAP: sequential structure alignment program for protein structure comparison. Methods Enzymol. 266, 617–635 (1996)

    Article  Google Scholar 

  38. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Theory and decision library: System theory, knowledge engineering, and problem solving. Kluwer Academic Publishers (1991)

    Google Scholar 

  39. Pearson, W., Lipman, D.: Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences 85(8), 2444 (1988)

    Article  Google Scholar 

  40. Ponting, C.P., Russell, R.B.: Swaposins: circular permutations within genes encoding saposin homologues. Trends Biochem. Sci. 20(5), 179–180 (1995)

    Article  Google Scholar 

  41. Rocha, J., Segura, J., Wilson, R.C., Dasgupta, S.: Flexible structural protein alignment by a sequence of local transformations. Bioinformatics 25(13), 1625–1631 (2009)

    Article  Google Scholar 

  42. Salem, S., Zaki, M., Bystroff, C.: FlexSnap: Flexible Non-sequential Protein Structure Alignment. Algorithms for Molecular Biology 5(1), 12 (2010)

    Article  Google Scholar 

  43. Shatsky, M., Nussinov, R., Wolfson, H.J.: FlexProt: alignment of flexible protein structures without a predefinition of hinge regions. J. Comput. Biol. 11(1), 83–106 (2004)

    Article  Google Scholar 

  44. Shatsky, M., Nussinov, R., Wolfson, H.J.: A method for simultaneous alignment of multiple protein structures. Proteins 56(1), 143–156 (2004)

    Article  Google Scholar 

  45. Shin, D.H., Lou, Y., Jancarik, J., Yokota, H., Kim, R., Kim, S.H.: Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc. Natl. Acad. Sci. U S A 101(36), 13,198–203 (2004)

    Article  Google Scholar 

  46. Shindyalov, I.N., Bourne, P.E.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11(9), 739–747 (1998)

    Article  Google Scholar 

  47. Siew, N., Elofsson, A., Rychlewski, L., Fischer, D.: MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics 16(9), 776–785 (2000)

    Article  Google Scholar 

  48. Swendsen, R.H., Wang, J.S.: Replica Monte Carlo simulation of spin glasses. Phys. Rev. Lett. 57(21), 2607–2609 (1986)

    Article  MathSciNet  Google Scholar 

  49. Vogel, C., Morea, V.: Duplication, divergence and formation of novel protein topologies. Bioessays 28(10), 973–978 (2006)

    Article  Google Scholar 

  50. Wohlers, I., Domingues, F.S., Klau, G.W.: Towards optimal alignment of protein structure distance matrices. Bioinformatics 26(18), 2273–2280 (2010)

    Article  Google Scholar 

  51. Yang, F., Bewley, C.A., Louis, J.M., Gustafson, K.R., Boyd, M.R., Gronenborn, A.M., Clore, G.M., Wlodawer, A.: Crystal structure of cyanovirin-N, a potent HIV-inactivating protein, shows unexpected domain swapping. J. Mol. Biol. 288(3), 403–412 (1999)

    Article  Google Scholar 

  52. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(suppl. 2), ii246–255 (2003)

    Google Scholar 

  53. Ye, Y., Godzik, A.: Multiple flexible structure alignment using partial order graphs. Bioinformatics 21(10), 2362–2369 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daniluk, P., Lesyng, B. (2014). Theoretical and Computational Aspects of Protein Structural Alignment. In: Liwo, A. (eds) Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes. Springer Series in Bio-/Neuroinformatics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28554-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28554-7_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28553-0

  • Online ISBN: 978-3-642-28554-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics