Skip to main content

Marine Crustaceans as Potential Hosts and Vectors for Metazoan Parasites

  • Chapter
  • First Online:
Arthropods as Vectors of Emerging Diseases

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 3))

Abstract

Crustaceans are highly abundant in the marine environment and play a key role as an important source of nutrition for a wide range of marine vertebrates such as fish, birds and mammals (seals, whales). In this context, marine helminth parasites have evolved complex (heteroxenous) life cycles in order to reproduce and use the trophic interactions in the marine food web to facilitate the transmission to the successive hosts. Members of the parasites taxa Digenea, Cestoda, Nematoda and Acanthocephala are common parasites in the marine environment and known to frequently include pelagic and benthic crustaceans of the subgroups Amphipoda, Cirripedia, Copepoda, Decapoda, Euphausiacea, Isopoda and Mysidacea in their life cycle. Infestation data from 52 peer-reviewed publications have been taken into consideration in order to summarize the current knowledge of crustaceans that are known to be the intermediate hosts for marine helminth parasites. This includes the discussion of life cycles, impacts of parasitism on hosts and zoonotical threats (e.g. for the nematode species of the genus Anisakis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RC (1996) Why do fish have so few roundworm (nematode) parasites? Environ Biol Fishes 46:1–5

    Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates – their development and transmission. CAB, Wallingford, pp 650

    Google Scholar 

  • Audicana MT, Kennedy MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21:360–379

    PubMed  CAS  Google Scholar 

  • Bakker TCM, Mazzi D, Zala S (1997) Parasite-induced changes in behavior and color make Gammarus pulex more prone to fish predation. Ecology 78:1098–1104

    Google Scholar 

  • Blair D (2005) Cestode and trematode infections. In: Rohde K (ed) Marine parasitology. CSIRO, Collingwood, pp 427–430

    Google Scholar 

  • Blakeslee AMH, Keogh CL, Byers JE, Kuris AM, Lafferty KD, Torchin ME (2009) Differential escape from parasites by two competing introduced crabs. Mar Ecol Prog Ser 393:83–96

    Google Scholar 

  • Blend CK, Dronen NO (2003) Bothriocephalus gadellus n. sp. (Cestoda: Bothriocephalidae) from the beardless codling Gadella imberbis (Vaillant) (Moridae) in the southwestern Gulf of Mexico, with a review of species of Bothriocephalus Rudolphi, 1808 reported from gadiform fishes. Syst Parasitol 54:33–42

    PubMed  Google Scholar 

  • Boxshall GA, Defaye D (2008) Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595:195–207

    Google Scholar 

  • Brattey J, Elner RW, Uhazy LS, Bagnall AE (1985) Metazoan parasites and commensals of five crab (Brachyura) species from eastern Canada. Can J Zool 63:2224–2229

    Google Scholar 

  • Brown SP, De Lorgeril J, Joly C, Thoma F (2003) Field evidence for density-dependent effects in the trematode Microphallus papillorobustus in its manipulated host, Gammarus insensiblis. J Parasitol 89:668–672

    PubMed  CAS  Google Scholar 

  • Caira JN, Reyda FB (2005) Eucestoda (true tapeworms). In: Rohde K (ed) Marine parasitology. CABI, Wallingford, pp 92–104

    Google Scholar 

  • Chubb JC, Ball MA, Parker GA (2009) Living in intermediate hosts: evolutionary adaptions in larval helminths. Trends Parasitol 26:93–102

    PubMed  Google Scholar 

  • Chung OS, Lee HJ, Sohn WM, Lee SH, Park IY, Oh SA, Chai JY, Seo M (2010) Discovery of Maritrema jebuensis n. sp. (Digenea: Microphallidae) from the Asian Shore Crab, Hemigrapsus sanguineus, in Korea. Korean J Parasitol 48:335–338

    PubMed  Google Scholar 

  • Cribb TH (2005) Digenea (endoparasitic flukes). In: Rhode K (ed) Marine parasitology. CABI, Wallingford, pp 76–87

    Google Scholar 

  • Falk-Petersen S (1981) Ecological investigations on the zooplankton community of Balsfjorden, northern Norway: Seasonal changes in body weight and the main biochemical composition of Thysanoessa inermis (Krøer), T. raschii (M. Sars) and Meganyctiphanes norvegica (M. sars) in relation to environmental factors. J Exp Biol Ecol 49:103–120

    CAS  Google Scholar 

  • Feigenbaum DL (1975) Parasites of the commercial shrimp Penaeus vannamei Boone and Penaeus brasiliensis Latreille. Bull Mar Sci 25:491–514

    Google Scholar 

  • Fredensborg BL, Poulin R (2005) Larval helminths in intermediate hosts: does competition early in life determine the fitness of adult parasites? Int J Parasitol 35:1061–1070

    PubMed  CAS  Google Scholar 

  • Gasca R, Manzanilla H, Suárez-Morales E (2009) Distribution of hyperiid amphipods (Crustacea) of the southern Gulf of Mexico, summer and winter, 1991. J Plankton Res 31:1493–1504

    CAS  Google Scholar 

  • Gibbons MJ, Hutchings L (1996) Zooplankton diversity and community structure around the southern Africa, with special attention to the Benguela upwelling system. S Afr J Sci 92:63–76

    Google Scholar 

  • Gómez-Gutiérrez J, Robinson CJ, Kawaguchi S, Nicol S (2010) Parasite diversity of Nyctiphanes simplex and Nematoscelis difficilis (Crustacea: Euphausiacea) along the northwestern coast of Mexico. Dis Aquat Org 88:249–266

    PubMed  Google Scholar 

  • Gruner HE (1993) Crustacea. In: Gruner HE (ed) Lehrbuch der speziellen Zoologie. Band I: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer, Jena, pp 448–1030

    Google Scholar 

  • Hadfield KA, Bruce NL, Smit NJ (2011) Cymothoa hermani sp. nov. (Isopoda, Cymothoidae, Crustacea), a parasitic isopod, collected off the Zanzibar coast, Tanzania from the mouth of a parrotfish (Scaridae). Zootaxa 2876:57–68

    Google Scholar 

  • Hartwich G (1974) Keys to genera of the Ascaridoidea. In: Anderson RC, Chabaud AG, Wilmott S (eds) CIH Keys to the nematode parasites of vertebrates. Farnham Royal, Commonwealth Agriculture Bureau, Richmond, pp 1–15

    Google Scholar 

  • Hays R, Measures LN, Huot J (1998) Euphausiids as intermediate hosts of Anisakis simplex in the St. Lawrence estuary. Can J Zool 76:1226–1235

    Google Scholar 

  • Helluy S, Thomas F (2010) Parasitic manipulation and neuroinflammation: evidence from the system Microphallus papillorobustus (Trematoda) – Gammarus (Crustacea). Parasit Vectors 3(38):1–11

    Google Scholar 

  • Hewitt RP, Watkins JL, Naganobu M, Tshernyshkov P, Brierley AS, Demed DA, Kasatkina S, Takao Y, Goss C, Malyshk A, Brandon MA, Kawaguchi S, Siegel V, Trathan PN, Emery JH, Everson I, Milled DGM (2002) Setting a precautionary catch limit for Antarctic Krill. Oceanography 15:26–33

    Google Scholar 

  • Hindsbo O (1972) Effects of Polymorphus (Acanthocephala) on colour and behaviour of Gammarus lacustris. Nature 238:333

    Google Scholar 

  • Hochberg NS, Hamer DH (2010) Anisakidosis: perils of the deep. Clin Infect Dis 51:806–812

    PubMed  Google Scholar 

  • Hunninen AV, Cable RM (1943) The life history of Lecithaster confusus Odhner (Trematoda: Hemiuridae). J Parasitol 29:71–79

    Google Scholar 

  • Hurst RJ (1984) Marine invertebrate hosts of New Zealand Anisakidae (Nematoda). N Z J Mar Freshwat Res 18:187–196

    Google Scholar 

  • Hutton RF (1964) A second list of parasites from marine and coastal animals of Florida. Trans Am Microsc Soc 83:439–447

    Google Scholar 

  • Hutton RF, Sogandares-Bernal F (1960) A list of parasites from marine and coastal animals of Florida. Trans Am Microsc Soc 79:287–292

    Google Scholar 

  • Hutton RF, Ball T, Eldred B (1962) Immature nematodes of the genus Contracaecum Railliet and Henry, 1912, from shrimps. J Parasitol 48:327–332

    PubMed  CAS  Google Scholar 

  • Jackson CJ, Marcogliese DJ, Burt MDB (1997) Role of hyperbenthic crustaceans in the transmission of marine helminth parasites. Can J Aquat Sci 54:815–820

    Google Scholar 

  • Jousson O, Bartoli P (2000) The life cycle of Opecoeloides columbellae (Pagenstecher, 1863) n. comb. (Digenea, Opecoelidae): evidence from molecules and morphology. Int J Parasitol 30:747–760

    PubMed  CAS  Google Scholar 

  • Karl H, Baumann F, Ostermeyer U, Kuhn T, Klimpel S (2010) Anisakis simplex (s.s.) larvae in wild Alaska salmon: no indication of post migration from viscera into flesh. Dis Aquat Org 94:201–209

    Google Scholar 

  • Kennedy CR (2006) Ecology of the Acanthocephala. Cambridge University Press, New York, pp 240

    Google Scholar 

  • Klimpel S, Palm HW (2011) Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In: Mehlhorn H (ed) Progress in parasitology, vol 2, Parasitology research monographs. Springer, Heidelberg, pp 201–222

    Google Scholar 

  • Klimpel S, Rückert S (2005) Life cycle strategies of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitol Res 97:141–149

    PubMed  Google Scholar 

  • Klimpel S, Palm HW, Seehagen A (2003) Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep. Parasitol Res 89:245–251

    PubMed  Google Scholar 

  • Klimpel S, Palm HW, Rückert S, Piatkowski U (2004) The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol Res 94:1–9

    PubMed  Google Scholar 

  • Klimpel S, Palm HW, Busch MW, Kellermanns E, Rückert S (2006) Fish parasites in the Arctic deep-sea: poor diversity in pelagic fish species vs. heavy parasite load in a demersal fish. Deep Sea Res I 53:1167–1181

    Google Scholar 

  • Klimpel S, Kellermanns E, Palm HW (2008) The role of pelagic swarm fish (Myctophidae: Teleostei) in the oceanic life cycle of Anisakis sibling species at the Mid-Atlantic Ridge, Central Atlantic. Parasitol Res 104:43–53

    PubMed  Google Scholar 

  • Klimpel S, Busch MW, Kellermanns E, Kleinertz S, Palm HW (2009) Metazoan deep-sea fish parasites. ACTA Biologica Benrodis, Supplementband 11. Verlag Natur & Wissenschaft, Solingen, pp 384

    Google Scholar 

  • Klimpel S, Busch MW, Kuhn T, Rohde A, Palm HW (2010) The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar Ecol Prog Ser 403:1–11

    CAS  Google Scholar 

  • Klimpel S, Kuhn T, Busch MW, Karl H, Palm HW (2011) Deep-water life cycle of Anisakis paggiae (Nematoda: Anisakidae) in the Irminger Sea indicates kogiid whale distribution in north Atlantic waters. Polar Biol 34:899–906

    Google Scholar 

  • Koehler AV, Poulin R (2010) Host partitioning by parasites in an intertidal crustacean community. J Parasitol 96:862–868

    PubMed  Google Scholar 

  • Køie M (1979) On the morphology and life-history of Derogenes varicus (Müller, 1784) Loss, 1901 (Trematoda, Hemiuridae). Parasitol Res 59:67–78

    Google Scholar 

  • Køie M (1984) Digenetic trematodes from Gadus morhua L. (Osteichthyes: Gadidae) from Danish and adjacent waters, with special reference to their life-histories. Ophelia 23:195–222

    Google Scholar 

  • Køie M (1989) On the morphology and life history of Lecithaster gibbosus (Rudolphi, 1802) Lühe, 1901 (Digenea, Hemiuroidea). Parasitol Res 75:361–367

    Google Scholar 

  • Køie M (1991) Aspect of the morphology and life cycle of Lecithocladium excisum (Digenea, Hemiuridae), a parasite of Scomber spp. Int J Parasitol 21:597–602

    PubMed  Google Scholar 

  • Køie M (1992) Life cycle and structure of the fish digenean Brachyphallus crenatus (Hemiuridae). J Parasitol 78:338–343

    PubMed  Google Scholar 

  • Køie M (1993) Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Can J Zool 71:1289–1296

    Google Scholar 

  • Køie M (2001) Experimental infections of copepods and stickelbacks Gasterosteus aculeatus with small ensheathed and large third-stage larvae of Anisakis simplex (Nematoda, Ascaridoidea, Anisakidae). Parasitol Res 87:32–36

    PubMed  Google Scholar 

  • Køie M, Fagerholm HP (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infection. Parasitol Res 81:481–489

    PubMed  Google Scholar 

  • Kuchta R, Scholz T, Brabec J, Bray RA (2008) Suppression of the tapeworm order Pseudophyllidea (Platyhelminthes: Eucestoda) and the proposal of two new orders, Bothriocephalidea and Diphyllobothriidea. Int J Parasitol 38:49–55

    PubMed  CAS  Google Scholar 

  • Kuhn T (2010) Molecular studies on marine ascaridoid nematodes. Diploma thesis, Heinrich Heine University, Düsseldorf, pp 100

    Google Scholar 

  • Kuhn T, García-Màrquez J, Klimpel S (2011) Adaptive radiation within marine anisakid nematodes: a zoogeographical modeling of cosmopolitan, zoonotic parasites. PLoS One 6(12):e28642

    PubMed  CAS  Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115

    PubMed  CAS  Google Scholar 

  • Lascara CM, Hofmann EE, Ross RM, Quetin LB (1999) Seasonal variability in the distribution of Antarctic Krill, Euphausia superba, west of the Antarctic Peninsula. Deep Sea Res I 46:951–984

    Google Scholar 

  • Latham ADM, Poulin R (2002) Field evidence of the impact of two acanthocephalan parasites on the mortality of three species of New Zealand shore crabs (Brachyura). Mar Biol 141:1131–1139

    Google Scholar 

  • Latham ADM, Poulin R (2003) Spatiotemporal heterogeneity in recruitment of larval parasites to shore crab intermediate hosts: the influence of shorebird definitive hosts. Can J Zool 81:1282–1291

    Google Scholar 

  • Leung TLF, Poulin R (2006) Effects of the trematode Maritrema novaezealandensis on the behaviour of its amphipods host: adaptive or not? J Helminthol 80:271–275

    PubMed  CAS  Google Scholar 

  • Lick R (1991) Untersuchungen zu Lebenszyklus (Krebse-Fische-marine Säuger) und Gefrierresistenz anisakider Nematoden in Nord- und Ostsee. Ber Inst Meereskd Kiel 218:1–195

    Google Scholar 

  • Lile NK (1998) Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology. J Fish Biol 53:945–953

    Google Scholar 

  • Marcogliese DJ (1994) Aeginina longicornis (Amphipoda: Caprellidea), new intermediate host for Echinorhynchus gadi (Acanthocephala: Echinorhynchidae). J Parasitol 80:1043–1045

    PubMed  CAS  Google Scholar 

  • Marcogliese DJ (1995) The role of zooplankton in the transmission of helminth parasites to fish. Rev Fish Biol Fish 5:336–371

    Google Scholar 

  • Marcogliese DJ (2002) Food webs and the transmission of parasites to marine fish. Parasitology 763(124):83–99

    Google Scholar 

  • Marcogliese DJ (2005) Parasites of the superorganism: Are they indicators of ecosystem health?. Int J Parasitol 35:705-716

    Google Scholar 

  • Martin JW, Davis GE (2001) An updated classification of the recent Crustacea, Science series 39. Natural History Museum of Los Angeles County, California, pp 124

    Google Scholar 

  • Martorelli SR, Navone GT, Ivanov V (2000) Proposed life cycle of Ascarophis marina (Nematoda: Cystidicolidae) in Argentine waters. J Parasitol 86:1047–1050

    PubMed  CAS  Google Scholar 

  • Martorelli SR, Fredensborg BL, Mouritsen KN, Poulin R (2004) Description and proposed life cycle of Maritrema novaezealandensis n. sp. (Microphallidae) parasitic in red-billed gulls, Larus novaehollandiae scopulinus, from Otago Harbor, South Island, New Zealand. J Parasitol 90:272–277

    PubMed  Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Adv Parasitol 66:47–148

    PubMed  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. In: Blaxter JHS, Southward AJ, Tyler PA (eds) Advances in marine biology. Academic, San Diego, pp 710

    Google Scholar 

  • McCallum HI, Kuris A, Harvell CD, Lafferty KD, Smith GW, Porter J (2004) Does terrestrial epidemiology apply to marine systems. Trends Ecol Evol 19:585–591

    Google Scholar 

  • McClelland G (2005) Nematoda (roundworms). In: Rhode K (ed) Marine parasitology. CABI, Collingwood, pp 104–115

    Google Scholar 

  • McDermott JJ (2011) Parasites of shore crabs in the genus Hemigrapsus (Decapoda: Brachyura: Varunidae) and their status in crabs geographically displaced: a view. J Nat Hist 45:2419–2441

    Google Scholar 

  • Mehlhorn H (2001) Encyclopedic reference of parasitology: Diseases, treatment, therapy. Springer, Berlin, pp 676

    Google Scholar 

  • Meland K, Willassen E (2007) The disunity of “Mysidacea” (Crustacea). Mol Phylogenet Evol 44:1083–1104

    PubMed  Google Scholar 

  • Möller H, Anders K (1983) Krankheiten und Parasiten der Meeresfische. Verlag Heino Möller, Kiel, pp 258

    Google Scholar 

  • Moravec F, Klimpel S (2009) Two new species of cystidicolid nematodes from the digestive tract of the deep-sea fish Coryphaenoides mediterraneus (Gilioi) (Macrouridae) from the Mid-Atlantic Ridge. Syst Parasitol 73:37–47

    PubMed  Google Scholar 

  • Moravec F, Nagasawa K (1986) New records of amphipods as intermediate hosts for salmonid nematode parasites in Japan. Folia Parasitol 33:45–49

    Google Scholar 

  • Moravec F, Wolter J, Körting W (1999) Some nematodes and acanthocephalans from exotic ornamental and freshwater fishes imported to Germany. Folia Parasitol 46:296–310

    PubMed  CAS  Google Scholar 

  • Moravec F, Fredensborg BL, Latham ADM, Poulin R (2003) Larval Spirurida (Nematoda) from the crab Macrophthalmus hirtipes in New Zealand. Folia Parasitol 50:109–114

    PubMed  Google Scholar 

  • Moravec F, Bakenhaster M, Fajer-Avila EJ (2010) New philometrids (Nematoda: Philometridae) from head tissues of two serranid fishes (Epinephelus morio and Mysteroperca microleis) off Florida, northern Gulf of Mexcio. Acta Parasitol 55:359–368

    Google Scholar 

  • Munk P, Nielsen TG (1994) Trophodynamics of the plankton community at Dogger Bank: predatory impact by larval fish. J Plankton Res 16:1225–1245

    Google Scholar 

  • Muñoz G, George-Nascimento M (2007) Two new species of Ascarophis (Nematoda: Cystidicolidae) in marine fishes from Chile. J Parasitol 93:1178–1188

    PubMed  Google Scholar 

  • Nemoto T (1970) Feeding pattern of baleen whales. In: Steele JH (ed) Marine food chains. University of California Press, Berkeley, pp 241–252

    Google Scholar 

  • Newman WA, Abbott DP (1980) Cirripedia: the barnacles. In: Morris RH, Abbott DP, Haderlie EC (eds) Intertidal invertebrates of California. Stanford University Press, Stanford, pp 504–536

    Google Scholar 

  • Nickol BB, Crompton DWT, Searle DW (1999) Reintroduction of Profiliocollis Meyer, 1931, as a genus in Acanthocephala: significance of the intermediate host. J Parasitol 85:716–718

    PubMed  CAS  Google Scholar 

  • Nickol BB, Heard RW, Smith NF (2002) Acanthocephalans from crabs in the southeastern U.S. with the first intermediate hosts known for Arhythmorhynchus frassoni and Hexaglandula corynosoma. J Parasitol 88:79–83

    PubMed  Google Scholar 

  • O’Grady RT (1985) Ontogenetic sequences and the phylogenetics of parasitic flatworm life cycles. Cladistics 1:159–170

    Google Scholar 

  • Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB, Bogor, pp 710

    Google Scholar 

  • Palm HW, Klimpel S (2007) Evolution of parasitic life in the ocean. Trends Parasitol 23:10–12

    PubMed  Google Scholar 

  • Palm HW, Klimpel S, Bucher C (1999) Checklist of metazoan fish parasites of German coastal waters. Ber Inst Meereskd Kiel 307:1–148

    Google Scholar 

  • Parker GA, Chubb JC, Ball MA, Roberts GN (2003) Evolution of complex life cycles in helminth parasites. Nature 425:480–484

    PubMed  CAS  Google Scholar 

  • Pichelin S, Kuris AM, Gurney R (1998) Morphological and biological notes on Polymorphus (Profilicollis) sphaerocephalus and Corynosoma stanleyi (Polymorphidae: Acanthocephala). J Parasitol 84:798–801

    PubMed  CAS  Google Scholar 

  • Poinar GO, Kuris AM (1975) Juvenile Ascarophis (Spirurida: Nematoda) parasitizing intertidal decapod Crustacea in California: with notes on prevalence and effects on hosts growth and survival. J Invertebr Pathol 26:375–382

    Google Scholar 

  • Porter ML, Meland K, Price W (2008) Global diversity of mysids (Crustacea-Mysida) in freshwater. Hydrobiologia 595:213–218

    Google Scholar 

  • Poulin R, Morand S (2000) The diversity of parasites. Q Rev Biol 75:277–293

    PubMed  CAS  Google Scholar 

  • Poulin R, Morand S (2004) Parasite diversity. Smithsonian Institute Press, Washington, DC

    Google Scholar 

  • Reimer L, Hnatiuk S, Rochner J (1975) Metacercarien in Planktontieren des mittleren Atlantik. Wiss Z Paedagog Hochsch Güstrow (Math Nat Fak) 2(75):239–358

    Google Scholar 

  • Richardson K, Nielsen TG, Bo Pedersen F, Heilmann JP, Lokkegaard B, Kaas H (1998) Spatial heterogeneity in the structure of the planktonic food web in the North Sea. Mar Ecol Prog Ser 168:197–211

    Google Scholar 

  • Rohde K (1984) Diseases caused by metazoans: helminths. In: Kinne O (ed) Diseases of marine animals, vol iv, part 1. Biologische Anstalt, Helgoland, pp 193–319

    Google Scholar 

  • Rohde K (2005) Definitions, and adaptations to a parasitic way of life. In: Rohde K (ed) Marine parasitology. CABI, Wallingford, pp 1–6

    Google Scholar 

  • Ruppert EE, Barnes RD (1994) Invertebrate zoology. Saunders College Publishing, Orlando, pp 1056

    Google Scholar 

  • Schmidt GD, MacLean SA (1978) Polymorphus (Profilicollis) major Lundström 1942 juveniles in Rock Crabs, Cancer irroratus, from Maine. J Parasitol 64:953–954

    Google Scholar 

  • Shimazu T (1975) Some cestode and acanthocephalan larvae from euphausiid crustaceans collected in the northern North Pacific Ocean. Bull Jpn Soc Sci Fish 41:813–821

    Google Scholar 

  • Siegel V, Loeb V, Gröger J (1998) Krill (Euphausia superba) density, proportional and absolute recruitment and biomass in the Elephant Island region (Antarctic Peninsula) during the period 1977 to 1997. Polar Biol 19:393–398

    Google Scholar 

  • Smith JW (1971) Thysanoessa inermis and T. longicaudata (Euphausiidae) as first intermediate hosts of Anisakis sp. (Nematoda: Ascaridata) in the northern North Sea, to the North of Scotland and at the Faroe. Nature 234:478

    PubMed  CAS  Google Scholar 

  • Smith JW, Snyder JM (2005) New locality for third-stage larvae of Anisakis simplex (sensu lato) (Nematoda: Ascaridoidea) in euphausiids Euphausia pacifica and Thysanoessa raschii from Prince William Sound, Alaska. Parasitol Res 97:539–542

    PubMed  Google Scholar 

  • Solonchenko AI (1985) Development of larval stages of Bothriocephalus scorpii. In: Hargis WJ Jr (ed) Parasitology and pathology of marine organisms of the world ocean. NOAA Technical Reprot NMFS 25, pp 83–84

    Google Scholar 

  • Spears T, Abele LG (1997) Crustacean phylogeny inferred from 18S rDNA. In: Fortey RA, Thomas RH (eds) Arthropod relationships. Chapman & Hall, London, pp 169–187

    Google Scholar 

  • Svendsen YS (1990) Hosts of third stage larvae of Hysterothylacium sp. (Nematoda, Anisakidae) in zooplankton from outer Oslofjord, Norway. Sarsia 75:161–167

    Google Scholar 

  • Taraschewski H (2005) Acanthocephala (thorny or spiny-headed worms). In: Rohde K (ed) Marine parasitology. CABI, Collingwood, pp 116–121

    Google Scholar 

  • Verweyen L, Klimpel S, Palm HW (2011) Molecular phylogeny of the Acanthocephala (Class Palaeacanthocaphala) with a paraphyletic assemblage of the orders Polymorphida and Echinorhynchida. PLoS One 6(12):e28285

    PubMed  CAS  Google Scholar 

  • Voigt M (1986) Gammariden (Crustacea: Amphipoda) als Zwischenwirte von Fischparasiten in Schleswig-Holsteinischen Küstengewässern. Diploma thesis, Christian-Albrechts University, Kiel, pp 63

    Google Scholar 

  • Whiteley NM, Rastrick SPS, Lunt DH, Rock J (2011) Latidudinal variations in the physiology of marine gammarid amphipods. J Exp Mar Biol Ecol 400:70–77

    Google Scholar 

  • Williams H, Jones A (1994) Parasitic worms of fish. Taylor & Francis, London, p 593

    Google Scholar 

  • Wirkner CS, Richter S (2007) Comparative analysis of the circulatory system in Amphipoda (Malacostraca, Crustacea). Acta Zool 88:159–171

    Google Scholar 

  • Zander CD (1998) Ecology of host parasite relationships in the Baltic Sea. Naturwissenschaften 85:426–436

    PubMed  CAS  Google Scholar 

  • Zander CD, Reimer LW (2002) Parasitism at the ecosystem level in the Baltic Sea. Parasitology 124:119–135

    Google Scholar 

  • Zander CD, Groenewold S, Strohbach U (1994) Parasite transfer from crustacean to fish hosts in the Lübeck Bight, SW Baltic Sea. Helgoländer Meeresunters 48:89–105

    CAS  Google Scholar 

  • Zander CD, Reimer LW, Barz K, Dietel G, Strohbach U (2000) Parasite communities of the Salzhaff (Northwest Mecklenburg, Baltic Sea) II. Guild communities, with special regard to snails, benthic crustaceans, and small-sized fish. Parasitol Res 86:359–372

    PubMed  CAS  Google Scholar 

  • Zander CD, Koçoglu Ö, Skroblies M (2002) Parasite populations and communities from the shallow littoral of the Orther Bight (Fehmarn, SW Baltic Sea). Parasitol Res 88:734–744

    PubMed  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the German Research Council (DFG KL 2087/1-1, 1-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wilhelm Busch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Busch, M.W., Kuhn, T., Münster, J., Klimpel, S. (2012). Marine Crustaceans as Potential Hosts and Vectors for Metazoan Parasites. In: Mehlhorn, H. (eds) Arthropods as Vectors of Emerging Diseases. Parasitology Research Monographs, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28842-5_14

Download citation

Publish with us

Policies and ethics