Skip to main content

Probabilistic Graphical Models and Markov Networks

  • Chapter
Markov Networks in Evolutionary Computation

Part of the book series: Adaptation, Learning, and Optimization ((ALO,volume 14))

Abstract

This chapter introduces probabilistic graphical models and explain their use for modelling probabilistic relationships between variables in the context of optimisation with EDAs.We focus on Markov networksmodels and review different algorithms used to learn and sample Markov networks. Other probabilistic graphical models are also reviewed and their differences with Markov networks are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbeel, P., Koller, D., Ng, A.Y.: Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research 7, 1743–1788 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Bach, F.R., Jordan, M.I.: Thin junction trees. In: Proceedings of the Conference Advances in Neural Information Processing Systems 20, NIPS, pp. 569–576. MIT Press (2002)

    Google Scholar 

  3. Besag, J.: Spatial interactions and the statistical analysis of lattice systems (with discussions). Journal of the Royal Statistical Society 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  4. Bromberg, F., Margaritis, D., Honavar, V.: Efficient Markov network structure discovery using independence tests. Journal of Artificial Intelligence Research 35, 449–484 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Castillo, E., Gutierrez, J.M., Hadi, A.S.: Expert Systems and Probabilistic Network Models. Springer (1997)

    Google Scholar 

  6. Chechetka, A., Guestrin, C.: Efficient principled learning of thin junction trees. In: Proceedings of the Conference Advances in Neural Information Processing Systems 20, NIPS. MIT Press (2008)

    Google Scholar 

  7. Cox, D., Wermuth, N.: Linear dependencies represented by chain graphs. Statistical Science 8(3), 204–218 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. d’Aspremont, A., Banerjee, O., Ghaoui, L.: First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications 30(1), 56–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, J., Domingos, P.: Bottom-up learning of Markov network structure. In: Proceedings of the Twenty-Seventh International Conference on Machine Learning. ACM Press (2010)

    Google Scholar 

  10. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(4), 380–393 (1997)

    Article  Google Scholar 

  11. Duchi, J., Gould, S., Koller, D.: Projected subgradient methods for learning sparse Gaussians. In: Proceedings of the 24th Annual Conference on Uncertainty in Artificial Intelligence, UAI 2008 (2008)

    Google Scholar 

  12. Frey, B.: Graphical Models for Machine Learning and Digital Communication. MIT Press (1998)

    Google Scholar 

  13. Fung, R., Chang, K.: Weighting and integrating evidence for stochastic simulation in Bayesian networks. Uncertainty in Artificial Intelligence 5, 209–219 (1989)

    Google Scholar 

  14. Gandhi, P., Bromberg, F., Margaritis, D.: Learning Markov network structure using few independence tests. In: Proceedings of the SIAM Conference on Data Mining, pp. 680–691 (2008)

    Google Scholar 

  15. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, pp. 564–584. Kaufmann, Los Altos (1987)

    Google Scholar 

  16. Gogate, V., Austin, W., Domingos, W.: Learning efficient Markov networks. In: Proceedings of the Conference on Neural Information Processing Systems (NIPS 2010). MIT Press (2010)

    Google Scholar 

  17. Guo, J., Levina, E., Michailidis, G., Zhu, J.: Joint structure estimation for categorical Markov networks (2010) (summited), http://www.stat.lsa.umich.edu/~elevina

  18. Hammersley, J.M., Clifford, P.: Markov fields on finite graphs and lattices (1971) (unpublished )

    Google Scholar 

  19. Kikuchi, R.: A theory of cooperative phenomena. Physical Review 81(6), 988–1003 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  21. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Larrañaga, P.: An Introduction to probabilistic graphical models. In: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation, pp. 25–54. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  23. Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A., Robles, V.: Machine learning in bioinformatics. Briefings in Bioinformatics 7, 86–112 (2006)

    Article  Google Scholar 

  24. Lauritzen, S.L.: Graphical Models. Oxford Clarendon Press (1996)

    Google Scholar 

  25. Li, S.: Markov Random Field Modeling in Image Analysis. Springer-Verlag New York Inc. (2009)

    Google Scholar 

  26. Li, S.Z.: Markov Random Field modeling in computer vision. Springer (1995)

    Google Scholar 

  27. Margaritis, D., Bromberg, F.: Efficient Markov network discovery using particle filters. Computational Intelligence 25(4), 367–394 (2009)

    Article  MathSciNet  Google Scholar 

  28. McCallum, A.: Efficiently inducing features of conditional random fields. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI 2003), pp. 403–410 (2003)

    Google Scholar 

  29. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons (2000)

    Google Scholar 

  30. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annals of Statistics 34, 1436–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Morita, T.: Formal structure of the cluster variation method. Progress of Theoretical Physics Supplements 115, 27–39 (1994)

    Article  Google Scholar 

  32. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, University of California, Berkeley (2002)

    Google Scholar 

  33. Neapolitan, R.E.: Learning Bayesian Networks. Prentice-Hall, Upper Saddle River (2003)

    Google Scholar 

  34. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman Publishers, Palo Alto (1988)

    Google Scholar 

  35. Pearl, J., Paz, A.: Graphoids: A graph-based logic for reasoning about relevance relations. Technical Report R–53–L, Cognitive Systems Laboratory, University of California, Los Angeles (1985)

    Google Scholar 

  36. Pelikan, M.: Hierarchical Bayesian Optimization Algorithm. Toward a New Generation of Evolutionary Algorithms. STUDFUZZ, vol. 170. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  37. Ravikumar, P., Wainwright, M., Lafferty, J.: High-dimensional ising model selection using l1-regularized logistic regression. The Annals of Statistics 38(3), 1287–1319 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications, vol. 104. Chapman & Hall (2005)

    Google Scholar 

  39. Scheinberg, K., Rish, I.: Learning sparse Gaussian Markov networks using a greedy coordinate ascent approach. In: Machine Learning and Knowledge Discovery in Databases, pp. 196–212 (2010)

    Google Scholar 

  40. Schlüter, F., Bromberg, F.: A survey on independence-based Markov networks learning, arXiv.org, arXiv:1108.2283 (2011)

    Google Scholar 

  41. Shachter, R., Peot, M.: Simulation approaches to general probabilistic inference on belief networks. In: Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence, pp. 221–234. North-Holland Publishing Co., Amsterdam (1990)

    Google Scholar 

  42. Shakya, S.: DEUM: A Framework for an Estimation of Distribution Algorithm based on Markov Random Fields. PhD thesis, The Robert Gordon University, Aberdeen, UK (April 2006)

    Google Scholar 

  43. Von Neumann, J.: Various techniques used in connection with random digits. Applied Math Series 12(36-38), 1 (1951)

    Google Scholar 

  44. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley Series in Probability and Mathematical Statistics, New York (1991)

    Google Scholar 

  45. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. Technical Report TR-2002-35, Mitsubishi Electric Research Laboratories (August 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Santana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Santana, R., Shakya, S. (2012). Probabilistic Graphical Models and Markov Networks. In: Shakya, S., Santana, R. (eds) Markov Networks in Evolutionary Computation. Adaptation, Learning, and Optimization, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28900-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28900-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28899-9

  • Online ISBN: 978-3-642-28900-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics