Skip to main content

On the Strictness of a Bound for the Diameter of Cayley Graphs Generated by Transposition Trees

  • Conference paper
Mathematical Modelling and Scientific Computation (ICMMSC 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 283))

Abstract

Cayley graphs have been well-studied as a model for interconnection networks due to their low diameter, optimal fault tolerance, and algorithmic efficiency, among other properties. A problem of practical and theoretical interest is to determine or estimate the diameter of Cayley graphs. Let Γ be a Cayley graph on n! vertices generated by a transposition tree on vertex set {1,2,…,n}. In an oft-cited paper [1], it was shown that the diameter of Γ is bounded as:

$$\mathop{\mathrm{diam}}\nolimits (\Gamma)~ \le ~\max_{\pi \in S_n} \left\{ c(\pi)-n+\sum_{i=1}^n \mathop{\mathrm{dist}}\nolimits _T(i,\pi(i)) \right\},$$

where the maximization is over all permutations π in the symmetric group, c(π) denotes the number of cycles in π, and \(\mathop{\mathrm{dist}}\nolimits _T\) is the distance function in T. It is of interest to determine how far away this upper bound can be from the true diameter value in the worst case and for which families of graphs this bound should be utilized or not utilized. In this work, we investigate the worst case performance of this upper bound. We show that for every n, there exists a transposition tree on n vertices such that the maximum possible difference Δ n between the upper bound and the true diameter value is at least n − 4. The lower bound we provide for Δ n is seen to be best possible, and an open problem is to determine an upper bound for Δ n .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, S.B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38(4), 555–566 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alspach, B.: Cayley graphs with optimal fault tolerance. IEEE Trans. Comput. 41(10), 1337–1339 (1992)

    Article  MathSciNet  Google Scholar 

  3. Annexstein, F., Baumslag, M., Rosenberg, A.L.: Group action graphs and parallel architectures. SIAM J. Comput. 19(3), 544–569 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berge, C.: Principles of Combinatorics. Academic Press, New York (1971)

    MATH  Google Scholar 

  5. Bermond, J.C., Kodate, T., Perennes, S.: Gossiping in Cayley Graphs by Packets. In: Deza, M., Manoussakis, I., Euler, R. (eds.) CCS 1995. LNCS, vol. 1120, pp. 301–315. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  6. Biggs, N.L.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  7. Bollobás, B.: Modern Graph Theory. Graduate Texts in Mathematics, vol. 184. Springer, New York (1998)

    MATH  Google Scholar 

  8. Chen, B., Xiao, W., Parhami, B.: Internode distance and optimal routing in a class of alternating group networks. IEEE Trans. Computers 55(12), 1645–1648 (2006)

    Article  Google Scholar 

  9. Godsil, C., Royle, G.: Algebraic Graph Theory. Graduate Texts in Mathematics, vol. 207. Springer, New York (2001)

    MATH  Google Scholar 

  10. Ganesan, A.: On a bound for the diameter of Cayley networks of symmetric groups generated by transposition trees (2011), http://arxiv.org/abs/1111.3114v1

  11. The GAP Group. GAP-Groups, Algorithms, and Programming, Version 4.4.12 (2008), http://www.gap-system.org

  12. Hahn, G., Sabidussi, G. (eds.): Graph Symmetry: Algebraic Methods and Applications. Kluwer Academic Publishers, Dordrecht (1997)

    Google Scholar 

  13. Heydemann, M.C.: Cayley graphs and interconnection networks. In: Graph Symmetry: Algebraic Methods and Applications, pp. 167–226. Kluwer Academic Publishers, Dordrecht (1997)

    Chapter  Google Scholar 

  14. Jerrum, M.: The complexity of finding minimum length generator sequences. Theoretical Computer Sci. 36, 265–289 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lakshmivarahan, S., Jho, J.-S., Dhall, S.K.: Symmetry in interconnection networks based on Cayley graphs of permutation groups: A survey. Parallel Computing 19, 361–407 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smith, J.H.: Factoring, into edge transpositions of a tree, permutations fixing a terminal vertex. J. Combinatorial Theory Series A 85, 92–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vaughan, T.P.: Bounds for the rank of a permutation on a tree. J. Combinatorial Math. Combinatorial Computing 19, 65–81 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Vaughan, T.P., Portier, F.J.: An algorithm for the factorization of permutations on a tree. J. Combinatorial Math. Combinatorial Computing 18, 11–31 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganesan, A. (2012). On the Strictness of a Bound for the Diameter of Cayley Graphs Generated by Transposition Trees. In: Balasubramaniam, P., Uthayakumar, R. (eds) Mathematical Modelling and Scientific Computation. ICMMSC 2012. Communications in Computer and Information Science, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28926-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28926-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28925-5

  • Online ISBN: 978-3-642-28926-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics