Skip to main content

Making Contact and Measuring Cellular Electrochemical Gradients

Electrochemical Methods and Ion-Selective Electrodes in Plant Physiology

  • Chapter
  • First Online:
Plant Electrophysiology
  • 1948 Accesses

Abstract

Reporting a voltage requires an electrical circuit that includes a voltmeter with contact to the biological material provided by an electrode. These electrodes can be metal or glass pipettes filled with a conducting salt solution. An ion-selective electrode contains a membrane in the tip of the glass pipette and is responsive to the activity (not concentration) of the ion sensed by the selective membrane. These electrodes can be made with tips of around 10−6 m diameter suitable for insertion measurements inside the cells of intact tissues and plants. This chapter describes how to make and use the electrodes for intracellular measurements in plants. Four stages of ion-selective microelectrode fabrication can be defined, and these are: (1) pulling of glass micropipettes, (2) silanization of the inside of surface of the ion-selective electrode or barrel, (3) backfilling and (4) calibration. Like all methods, there are both advantages and disadvantages in using microelectrodes to measure cellular electrochemical gradients and these are compared and discussed in relation to other available techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen GJ, Kwak JM, Chu SP, Llopis J, Tsien RY, Harper JF, Schroeder JI (1999) Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J 19:735–747

    Article  PubMed  CAS  Google Scholar 

  • Ammann D (1986) Ion-selective microelectrodes, principles, design and application. Springer, Berlin

    Google Scholar 

  • Bakker E, Pretsch E (2005) Potentiometric sensors for trace level analysis. Trends Anal Chem 24:199–207

    Article  CAS  Google Scholar 

  • Blatt MR (1991) A primer in plant electrophysiological methods. In: Dey PM, Harbourne JB (eds) Methods in plant biochemistry, vol 6. Academic, San Diego, pp 281–356

    Google Scholar 

  • Blatt MR, Slayman CL (1983) KCl leakage from microelectrodes and its impact on the membrane parameters of a non-excitable cell. J Memb Biol 72:223–234

    Article  CAS  Google Scholar 

  • Blatter LA, McGuigan JAS (1988) Estimation of the upper limit of the free magnesium concentration measured with Mg-sensitive microelectrodes in ferret ventricular muscle: (1) use of the Nicolsky-Eisenmann equation and (2) in calibrating solutions of the appropriate concentrations. Magnesium 7:154–165

    PubMed  CAS  Google Scholar 

  • Brown RJC, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. Trends Anal Chem 24:266–274

    Article  CAS  Google Scholar 

  • Carden DE, Diamond D, Miller AJ (2001) An improved Na+-selective microelectrode for intracellular measurements in plant cells. J Exp Bot 52:1353–1359

    Article  PubMed  CAS  Google Scholar 

  • Clark LJ, Gowing DJG, Lark RM, Leeds-Harrison PB, Miller AJ, Wells DM, Whalley WR, Whitmore AP (2005) Sensing the physical and nutritional status of the root environment in the field: a review of progress and opportunities. J Agric Sci 143:347–358

    Article  Google Scholar 

  • Coster HGL (1966) Chloride in cells of Chara australis. Aust J Biol Sci 19:545–554

    CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (1999) Nitrate interference with potassium-selective microelectrodes. J Exp Bot 50:1709–1712

    CAS  Google Scholar 

  • Fry CH, Hall SK, Blatter LA, McGuigan JAS (1990) Analysis and presentation of intracellular measurements obtained with ion- selective microelectrodes. Exp Physiol 75:187–198

    PubMed  CAS  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908

    Article  PubMed  CAS  Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic subcellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    Article  PubMed  Google Scholar 

  • Henriksen GH, Bloom AJ, Spanswick RM (1990) Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelectrodes. Plant Physiol 93:271–280

    Article  PubMed  CAS  Google Scholar 

  • Hove-Madsen L, Baudet S, Bers DM (2010) Making and using calcium-selective mini- and microelectrodes. In: Whitaker M (ed) Calcium in living cells, vol 99. Elsevier Academic Press Inc., San Diego, pp 67–89

    Chapter  Google Scholar 

  • Inczédy J, Lengyel Y, Ure AM (1998) Compendium of analytical nomenclature: definitive rules 1997, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Janz GJ (1961) Silver-silver halide electrodes. In: Ives DJG, Janz GJ (eds) Reference electrodes: theory and practice. Academic, NY, pp 218–220

    Google Scholar 

  • Jayakannan M, Babourina O, Rengel Z (2011) Improved measurements of Na+ fluxes in plants using calixarene-based microelectrodes. J Plant Physiol 168:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Shaff JE, Kuhtrieber WM, Jaffe L, Lucas WJ (1992) Use of extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601–610

    Article  CAS  Google Scholar 

  • MacRobbie EAC (1971) Fluxes and compartmentation in plant cells. Annu Rev Plant Physiol 22:75–96

    Article  CAS  Google Scholar 

  • Miller AJ (1995) Ion-selective microelectrodes for measurement of intracellular ion concentrations. Methods Plant Cell Biol 49:273–289

    Google Scholar 

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1992) The mechanism of nitrate transport across the tonoplast of barley root cells. Planta 187:554–557

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854

    Article  CAS  Google Scholar 

  • Miller AJ, Zhen R-G (1991) Measurement of intracellular nitrate concentration in Chara using nitrate-selective microelectrodes. Planta 184:47–52

    Article  CAS  Google Scholar 

  • Miwa H, Sun J, Oldroyd JED, Downie A (2006) Analysis of calcium spiking using a cameleon calcium sensor reveals that nodulation gene expression is regulated by calcium spike number and the developmental status of the cell. Plant J 48:883–894

    Article  PubMed  CAS  Google Scholar 

  • Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356

    Article  PubMed  CAS  Google Scholar 

  • Negulescu PA, Machen TE (1990) Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 192. Academic, San Diego, pp 38–81

    Google Scholar 

  • Okihara K, Kiyosawa K (1988) Ion composition of the chara internode. Plant Cell Physiol 29:21–25

    CAS  Google Scholar 

  • Radcliffe SA, Miller AJ, Ratcliffe RG (2005) Microelectrode and 133Cs NMR evidence for variable cytosolic and cytoplasmic nitrate pools in maize root tips. Plant Cell Environ 28:1379–1387

    Article  CAS  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526

    Article  PubMed  CAS  Google Scholar 

  • Sanders D, Slayman CL (1982) Control of intracellular pH. predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol 80:377–402

    Article  PubMed  CAS  Google Scholar 

  • Schefer U, Ammann D, Pretsch E, Oesch U, Simon W (1986) Neutral carrier based Ca2+- selective electrode with detection limit in the sub-nanomolar range. Anal Chem 58:2282–2285

    Article  CAS  Google Scholar 

  • Tsien RY, Rink TJ (1981) Ca2+ selective electrodes: a novel PVC- gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Methods 4:73–86

    Article  PubMed  CAS  Google Scholar 

  • Walker DJ, Smith SJ, Miller AJ (1995) Simultaneous measurement of intracellular pH and K+ or NO -3 in barley root cells using triple-barreled, ion-selective microelectrodes. Plant Physiol 108:743–751

    PubMed  CAS  Google Scholar 

  • Wells D, Miller AJ (2000) Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil 221:105–108

    Article  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  PubMed  CAS  Google Scholar 

  • Zhen R-G, Koyro H-W, Leigh RA, Tomos AD, Miller AJ (1991) Compartmental nitrate concentrations in barley root cells measured with nitrate-selective microelectrodes and by single-cell sap sampling. Planta 185:356–361

    Article  CAS  Google Scholar 

Download references

Acknowledgments

John Innes Centre is grant-aided by the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, A.J. (2012). Making Contact and Measuring Cellular Electrochemical Gradients. In: Volkov, A. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29119-7_6

Download citation

Publish with us

Policies and ethics