Skip to main content

The Effects of Naturally Produced Dust Particles on Radiative Transfer

  • Conference paper
  • First Online:
Advances in Meteorology, Climatology and Atmospheric Physics

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 1343 Accesses

Abstract

Mineral dust has a profound effect on the radiative budget and energy distribution of the atmosphere. By absorbing and scattering the solar radiation aerosols reduce the amount of energy reaching the surface. In addition aerosols enhance the greenhouse effect by absorbing and emitting longwave radiation. Desert dust forcing exhibits large regional and temporal variability due to its short lifetime and diverse optical properties further complicate the quantification of the Direct Radiative Effect (DRE). The complexity of the above processes, indicate the need of an integrated approach in order to examine these impacts. To this end the radiative transfer module RRTMG has been incorporated into the framework of the SKIRON model. The updated system was used to perform a 6-year long simulation over the Mediterranean region. As it was found, the most profound effect dust clouds have in areas away from the sources is the surface cooling through the “shading” effect. The long wave radiation forcing below and above the dust cloud is considerable and drives changes in the tropospheric temperature. In general dust particles cause warming near the ground and at mid-tropospheric layers and at the same time cooling of the lower troposphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Astitha M, Kallos G, Spyrou C, O’Hirok W, Lelieveld J, Denier van der Gon HAC (2010) Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts. Atmos Chem Phys 10:5797–5822. doi:10.5194/acp-10-5797-2010

    Article  Google Scholar 

  • Barker HW, Pincus R, Morcrette JJ, The Monte-Carlo Independent Column Approximation (2003) Application within large-scale models. In: Proceedings of the GCSS/ARM workshop on the representation of cloud systems in large-scale models, Kananaskis, Alberta, Canada, 10pp

    Google Scholar 

  • Clough SA, Shephard MW, Mlawer EJ, Delamere JS, Iacono MJ, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Transf 91:233–244

    Article  Google Scholar 

  • Dufrense JL, Gautier C, Ricchiazzi P (2001) Longwave scattering of mineral aerosols. J Atmos Sci 59:959–1966

    Google Scholar 

  • Haywood JM et al (2003) Radiative properties and direct Radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J Geophys Res 108(D18):8577. doi:10.1029/2002JD002687

    Article  Google Scholar 

  • Helmert J, Heinold B, Tegen I, Hellmuth O, Wendisch M (2007) On the direct and semidirect effects of Saharan dust over Europe: a modelling study. J Geophys Res 112. doi:10.1029/2006JD007444

  • Iacono MJ, Delamere JS, Mlawer EJ, Clough SA (2003) Evaluation of upper tropospheric water vapor in the NCAR community climate model (CCM3) using modeled and observed HIRS radiances. J Geophys Res 108(D2):4037. doi:10.1029/2002JD002539

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007), Climate change 2007: the physical science basis, Cambridge University Press, UK

    Google Scholar 

  • Kallos G, Spyrou C, Astitha M, Mitsakou C, Solomos S, Kushta J, Pytharoulis I, Katsafados P, Mavromatidis E, Papantoniou N, Vlastou G (2009) Ten-year operational dust forecasting – recent model development and future plans. IOP Conf Ser Earth Environ Sci 7(2009). doi:10.1088/1755-1307/7/1/012012

  • Kaufman YJ, Koren I, Remer LA, Rosenfeld D, Rudich Y (2005) The effect of smoke, dust and pollution aerosol on shallow cloud development over the Atlantic 160 Ocean. Proc Natl Acad Sci USA 102:11207–11212

    Article  Google Scholar 

  • Levin Z, Teller A, Ganor E, Yin Y (2005) On the interactions of mineral dust, sea-salt particles and clouds: a measurement and modelling study from the Mediterranean Israeli Dust Experiment campaign. J Geophys Res 110:D20202. doi:10.1029/2005JD005810

    Article  Google Scholar 

  • Liao H, Seinfeld JH (1998) Radiative forcing by mineral dust aerosols: sensitivity to key variables. J Geophys Res 103(D):31637–31645

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682

    Article  Google Scholar 

  • Morcrette JJ, Barker HW, Cole JNS, Iacono MJ, Pincus R (2008) Impact of a new radiation package, McRad, in the ECMWF integrated forecast system. Mon Weather Rev 136(12):4773–4798, doi: 10.1175/2008MWR2363.1

    Google Scholar 

  • Oreopoulos L, Barker HW (1999) Accounting for subgrid-scale cloud variability in a multi-layer 1-D solar radiative transfer algorithm. Q J R Meteor Soc 125:301–330

    Google Scholar 

  • Pincus R, Barker HW, Morcrette JJ (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J Geophys Res 108(D13):4376. doi:10.1029/2002JD003322

    Article  Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683

    Article  Google Scholar 

  • Solomos S, Kallos G, Kushta J, Astitha M, Tremback C, Nenes A, Levin Z (2011) An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos Chem Phys 11:873–892. doi:10.5194/acp-11-873-2011

    Article  Google Scholar 

  • Spyrou C, Mitsakou C, Kallos G, Louka P, Vlastou G (2010) An improved limited area model for describing the dust cycle in the atmosphere. J Geophys Res 115:D17211. doi:10.1029/2009JD013682

    Article  Google Scholar 

  • Tegen I (2003) Modeling the mineral dust aerosol cycle in the climate system. Q Sci Rev 22:1821–1834

    Article  Google Scholar 

  • Tegen I, Lacis AA (1996) Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J Geophys Res 101:19,237–19,244

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences, Academic Press NY, pp 233–277

    Google Scholar 

  • Yoshioka M, Mahowald N, Dufresne JL, Luo C (2005) Simulation of absorbing aerosol indices for African dust. J Geophys Res 110:D18S17. doi:10.1029/2004JD005276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Spyrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spyrou, C., Kallos, G., Mitsakou, C., Athanasiadis, P., Kalogeri, C. (2013). The Effects of Naturally Produced Dust Particles on Radiative Transfer. In: Helmis, C., Nastos, P. (eds) Advances in Meteorology, Climatology and Atmospheric Physics. Springer Atmospheric Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29172-2_45

Download citation

Publish with us

Policies and ethics