Skip to main content

Magneto-Nanosensor Diagnostic Chips

  • Chapter
  • First Online:
Point-of-Care Diagnostics on a Chip

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1856 Accesses

Abstract

We have developed an automated assay for disease biomarker detection that can be run on a handheld sensing platform. By coupling magnetic nanotechnology with an array of magnetically responsive nanosensors, we demonstrate a rapid, multiplex immunoassay that eliminates the need for trained technicians to run molecular diagnostic tests. A major limitation for other detection modalities is signal distortion that occurs due to background heterogeneity in ionic strength, pH, temperature, and autofluorescence. Here, we present a magnetic nanosensor technology that is insensitive to background yet still capable of rapid, multiplex protein detection with resolution down to attomolar concentrations and extensive linear dynamic range. The insensitivity of our detector to various media enables our technology to be directly applied to a variety of settings such as molecular biology and clinical diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kotitz, H. Matz, L. Trahms, H. Koch, W. Weitschies, T. Rheinlander, W. Semmler, and T. Bunte, SQUID based remanence measurements for immunoassays, IEEE Transactions on Applied Superconductivity, vol. 7, pp. 3678–3681 (1997)

    Article  Google Scholar 

  2. D.R. Baselt, G.U. Lee, M. Natesan, S.W. Metzger, P.E. Sheehan,R.J. Colton, A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)

    Article  Google Scholar 

  3. T.G.S.M. Rijks, S.K.J. Lenczowski, R. Coehoorn, W.J.M. De Jonge, In-plane and out-of-plane anisotropic magnetoresistance in Ni_ {80} Fe_ {20} thin films. Phys. Rev. B 56, 362 (1997)

    Article  ADS  Google Scholar 

  4. J.M. Daughton, GMR applications. J. Magn. Magn. Mater., 192, 334–342 (1999)

    Article  ADS  Google Scholar 

  5. S.J. Osterfeld, H. Yu, R.S. Gaster, S. Caramuta, L. Xu, et. al, Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. 105, 20637 2008

    Google Scholar 

  6. C.H. Tsang, R.E. Fontana, T. Lin, D.E. Heim, B.A. Gurney, M.L. Williams, Design, fabrication, and performance of spin-valve read heads for magnetic recording applications. IBM J. Res. Develop. 42, 103–116 (1998)

    Article  Google Scholar 

  7. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl. Phys. Lett. 93, 082508 (2008)

    Article  ADS  Google Scholar 

  8. R.S. Gaster, L. Xu, S.-J. Han, R.J. Wilson, D.A. Hall, S.J. Osterfeld, H. Yu, S.X. Wang, Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nat. Nanotechnol. 6, 314–320 (2011)

    Article  ADS  Google Scholar 

  9. L. Xu, H. Yu, M.S. Akhras, S.-J. Han, S. Osterfeld, R.L. White, N. Pourmand, S.X. Wang, Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008)

    Article  Google Scholar 

  10. S.P. Mulvaney, K.M. Myers, P.E. Sheehan, L.J. Whitman, Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosens. Bioelectron. 24, 1109–1115 (2009)

    Article  Google Scholar 

  11. M. Koets, T. van der Wijk, J.T.W.M. van Eemeren, A. van Amerongen, M.W.J. Prins, Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens. Bioelectron. 24, 1893–1898 (2009)

    Article  Google Scholar 

  12. D.L. Graham, H. Ferreira, J. Bernardo, P.P. Freitas, J.M.S. Cabral, Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications. J. Appl. Phys. 91, 7786 (2002)

    Article  ADS  Google Scholar 

  13. A.L. Koh and R. Sinclair, TEM Studies of Iron Oxide nanoparticles for Cell Labeling and Magnetic Separation. Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, Santa Clara, CA, pp. 101–104, (2007)

    Google Scholar 

  14. R. De Palma, C. Liu, F. Barbagini, G. Reekmans, K. Bonroy, W. Laureyn, G. Borghs, G. Maes, Magnetic Particles as Labels in bioassays: interactions between a biotinylated gold substrate and streptavidin magnetic particles. J. Phys. Chem. C, 111, 12227–12235 (2007)

    Article  Google Scholar 

  15. R.S. Gaster, D.A. Hall, S.X. Wang, Autoassembly protein arrays for analyzing antibody cross-reactivity. Nano Lett., 11, 3047 (2011)

    Article  Google Scholar 

  16. J. Kling, Moving diagnostics from the bench to the bedside. Nat. Biotechnol. 24, 891–893 (2006)

    Article  Google Scholar 

  17. R.S. Gaster, D.A. Hall, S.X. Wang, nanoLAB: an ultraportable, handheld diagnostic laboratory for global health. Lab Chip 11, 950–956 (2011)

    Google Scholar 

  18. D.A. Hall, R.S. Gaster, T. Lin, S.J. Osterfeld, S. Han, B. Murmann, S.X. Wang, GMR biosensor arrays: a system perspective. Biosens. Bioelectron. 25, 2051–2057 (2010)

    Article  Google Scholar 

  19. B.M. de Boer, J.A.H.M. Kahlman, T.P.G.H. Jansen, H. Duric, J. Veen, An integrated and sensitive detection platform for magneto-resistive biosensors. Biosens. Bioelectron. 22, 2366–2370 (2007)

    Article  Google Scholar 

  20. D.A. Hall, R.S. Gaster, S.J. Osterfeld, B. Murmann, S.X. Wang, GMR biosensor arrays: correction techniques for reproducibility and enhanced sensitivity. Biosens. Bioelectron. 25, 2177–2181 (2010)

    Article  Google Scholar 

  21. R.S. Gaster, D.A. Hall, C.H. Nielsen, S.J. Osterfeld, H. Yu, K.E. Mach, R.J. Wilson, B. Murmann, J.C. Liao, S.S. Gambhir, S.X. Wang, Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327–1332 (2009)

    Article  Google Scholar 

  22. J. Lorenzo, A. Castro, A. Aguilera, E. Prieto, S. López-Calvo, B. Regueiro, J. Pedreira, Total HCV core antigen assay: a new marker of HCV viremia and its application during treatment of chronic hepatitis C. J. Virol. Methods 120, 173–177 (2004)

    Article  Google Scholar 

  23. R.L. Edelstein, C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt, L.J. Whitman, R.J. Colton, The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron. 14, 805–813 (2000)

    Article  Google Scholar 

  24. N. Sun, T-J. Yoon, H. Lee, W. Andress, V. Demas, P. Prado, R. Weissleder, D. Ham, Palm NMR and one-chip NMR. Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, San Francisco, CA, pp. 488–489 (2010)

    Google Scholar 

  25. M. Piedade, L.A. Sousa, T.M. de Almeida, J. Germano, B.A. da Costa, J.M. Lemos, P.P. Freitas, H.A. Ferreira, F.A. Cardoso, A new hand-held microsystem architecture for biological analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, pp. 2384–2395, (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the United States National Cancer Institute (grants 1U54CA119367, 1U54CA143907, 1U54CA151459, 1U01CA152737, 5R33CA138330, and N44CM-2009–00011), the United States National Science Foundation (grant ECCS-0801385–000), the United States Defense Advanced Research Projects Agency/Navy (grant N00014–02–1–0807), a Gates Foundation Grand Challenge Exploration Award, and the National Semiconductor Corporation. RSG acknowledges financial support from the Stanford Medical School Medical Scientist Training Program and the National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan X. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaster, R.S., Hall, D.A., Wang, S.X. (2013). Magneto-Nanosensor Diagnostic Chips. In: Issadore, D., Westervelt, R. (eds) Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29268-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29268-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29267-5

  • Online ISBN: 978-3-642-29268-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics