Skip to main content

The Upper Mantle Seismic Velocity Structure of South-Central Africa and the Seismic Architecture of Precambrian Lithosphere Beneath the Congo Basin

  • Chapter
  • First Online:
Geology and Resource Potential of the Congo Basin

Abstract

The seismic architecture of the lithosphere beneath the Congo Basin is investigated using a new shear wave velocity model of the upper mantle for central and southern Africa derived from an inversion of Rayleigh wave group velocity measurements. The model is similar to other tomographic models derived from Rayleigh wave phase velocities, revealing a region of fast upper mantle velocities in the 50–100 km depth interval beneath the northwestern, central and southern portions of the basin, and slower upper mantle velocities beneath the northeastern part of the basin, as well as beneath Proterozoic mobile belts to the east and south of the basin. The upper mantle velocity pattern indicates that Proterozoic lithosphere may lie beneath the northeastern side of the basin, but it does not support the presence of Proterozoic lithosphere beneath the entire northern portion of the basin. This finding suggests that lithospheric structure beneath the basin is not uniform, as is commonly assumed in geodynamic models explaining how the basin formed. A second geodynamic implication concerns the Neoproterozoic rifting event that may have initiated basin subsidence. The proposed locations of the rifts are in the region of the velocity model where the velocities begin to change from faster to slower going from the center of the basin toward the northeast. Thus, the rifts may have formed along the border between two separate, smaller Archean blocks, as opposed to within the middle of a single, larger Archean block, alleviating the need to explain how a Neoproterozoic rift might form within the interior of a large Archean craton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammon CJ (1998) Note on seismic surface wave processing. Part I. Group velocity estimation, http://eqseis.geosc.psu.edu/~cammon/

  • Bassin C, Laske G, Masters G, Eos T (2000) The current limits of resolution for surface wave tomography in North America. Am Geophys Union 81:F897

    Google Scholar 

  • Betts PG, Giles D (2006) The 1800–1100 Ma tectonic evolution of Australia. Precambrian Res 144:92–125

    Article  Google Scholar 

  • Braitenberg C, Ebbing J (2009) The GRACE-satellite gravity and geoid fields in analyzing large-scale cratonic or intracratonic basins. Geophys Prospect 57:559–571. doi:10.1111/j.1365-2478.2009.00793.x

    Article  Google Scholar 

  • Buiter SJH, Steinberger B, Medvedev S, Tetreault J (2012) Could the mantle have caused subsidence of the Congo Basin?Tectonophysics 514-517, 62-80.. doi:10.1016/j.tecto.2011.09.024

    Google Scholar 

  • Cahen L (1954) Géologie du Congo belge. Vaillant-Caramanne, Liège, p 577

    Google Scholar 

  • Cawood PA, Korsch RJ (2008) Assembling Australia: Proterozoic building of a continent. Precambrian Res 166:1–38

    Article  Google Scholar 

  • Crosby AG, Fishwick S, White N (2010) Structure and evolution of the intracratonic Congo Basin. Geochem Geophys Geosyst. 11: Q06010. doi: 10.1029/2009GC003014

  • Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc London 149:539–546

    Article  Google Scholar 

  • Darbyshire F, Eaton D (2010) The lithospheric root beneath Hudson Bay, Canada from Rayleigh wave dispersion: no clear seismological distinction between Archean and Proterozoic mantle. Lithos 120:144–159. doi:10.1016/j.lithos.2010.04.010

    Article  Google Scholar 

  • De Wit M, Stankiewicz J, Reeves C (2008) Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans-Atlantic corruption. In: Pankhurst RJ, Trouw R AJ, Brito neves BB, de wit MJ (eds) West Gondwana: pre-cenozoic correlations across the South Atlantic Region, vol 294. Geological Society, London, Special Publications, pp 399–412. doi: 10.1144/SP294.20

  • Downey NJ, Gurnis M (2009) Instantaneous dynamics of the cratonic Congo basin. J Geophys Res 114, B06401. doi:10.1029/2008JB006066

    Google Scholar 

  • Dziewonski AM, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. B Seismol Soc Am 59:427–444

    Google Scholar 

  • Fernandez-Alonso M, Cutten H, De Waele B, Tack L, Tahon A, Baudet D, Barritt SD (2012) The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): The result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events. Precambrian Res 216–219:63–86

    Article  Google Scholar 

  • Fishwick S (2010) Surface wave tomography: imaging of the lithosphere asthenosphere boundary beneath central and southern Africa. Lithos 120:63–73

    Article  Google Scholar 

  • Fishwick S, Bastow ID (2011) Towards a better understanding of African topography: a review of passive-source seismic studies of the African crust and upper mantle. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of Earth history. Geological Society, London, pp 343–371. doi:10.1144/SP357.19, Special Publications

    Google Scholar 

  • Fishwick S, Reading AM (2008) Anomalous lithosphere beneath the Proterozoic of western and central Australia: a record of continental collision and intraplate deformation? Precambrian Res 166:111–121

    Article  Google Scholar 

  • Forte AM, Quere S, Moucha R, Simmons NA, Grand SP, Mitrovica JX, Rowley DB (2010) Joint seismic-geodynamic-mineral physical modelling of African geodynamics: a reconciliation of deep-mantle convection with surface geophysical constraints. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.03.017

    Google Scholar 

  • Gubanov AP, Mooney WD (2009) New global geological maps of crustal basement age. Eos transactions, AGU, 90, Fall Meet.Suppl. Abstract T53B-1583

    Google Scholar 

  • Hartley R, Allen PA (1994) Interior cratonic basins of Africa: Relation to continental break-up and role of mantle convection. Basin Res 6:95–113

    Article  Google Scholar 

  • Hartley R, Watts AB, Fairhead JD (1996) Isostacy of Africa. Earth Planet Sci Lett 137:1–18

    Article  Google Scholar 

  • Herrmann RB (1973) Some aspects of band-pass filtering of surface waves. B Seismol Soc Am 63:663–671

    Google Scholar 

  • Julià J, Ammon CJ, Herrmann RB, Correig AM (2000) Joint inversion of receiver functions and surface-wave dispersion observations. Geophys J Int 143:99–112

    Article  Google Scholar 

  • Julià J, Ammon CJ, Nyblade AA (2005) Evidence for mafic lower crust in Tanzania, East Africa, from joint inversion of receiver functions and Rayleigh wave dispersion velocities. Geophys J Int 162:555–569

    Article  Google Scholar 

  • Kadima E, Delvaux D, Sebagenzi SN, Tackw L, Kabeyaz SM (2011a) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23:499–527. doi:10.1111/j.1365-2117.2011.00500

    Article  Google Scholar 

  • Kadima EK, Sebagenzi SMN, Lucazeau F (2011b) A Proterozoic-rift origin for the structure and the evolution of the cratonic Congo basin. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2011.01.037

  • Kaiho Y, Kennett BLN (2000) Three-dimensional seismic structure beneath the Australian region from refracted wave observations. Geophys J Int 142:651–668

    Article  Google Scholar 

  • Kennett BLN, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 122:429–465

    Article  Google Scholar 

  • Lawrence SR, Makazu MM (1988) Zaire’s Central Basin: Prospectivity outlook. Oil Gas J 86:105–108

    Google Scholar 

  • Lepersonne J (1974) Map and Notice explicative de la carte géologique du Zaïre au 1/2 000 000.Direction de la Géologie, Dept. des Mines, Rép.du Zaïre, 67 pp

    Google Scholar 

  • Lepersonne J (1978) Stucturegeologique du basin interieur du Zaire, Academie Royale des Sciences d’Outre-Mer, Bruxelles, Classe des Sciences Naturelles et Medicales, N.N. XX(2), 1–27

    Google Scholar 

  • Linol B (2013) Sedimentology and sequence stratigraphy of the Congo and Kalahari Basins of south-central Africa and their evolution during the formation and break-up of West Gondwana. PhD thesis, Nelson Mandela Metropolitan University, 375p

    Google Scholar 

  • Master S (2004) Archean to Neoproterozoic assembly and growth of the Greater Congo Craton. In: Geoscience Africa 2004 Conference, Abstract Volume 2, University of the Witwatersrand, Johannesburg, 12–16 July, 2004, 425–426

    Google Scholar 

  • Moloto-A-Kanguemba GR, Trindade RIF, Monié P, Nédélec A, Siqueira R (2008) A late Neoproterozoic paleomagnetic pole for the Congo craton: Tectonic setting, paleomagnetism and geochronology of the Nola dike swarm (Central African Republic). Precambrian Res 164:214–226

    Article  Google Scholar 

  • Mulibo G, Nyblade A (2013) The P and S wave velocity structure of the mantle beneatheastern Africa and theAfrican superplume anomaly. Geochem Geophys Geosyst. doi:10.1002/ggge.20150

    Google Scholar 

  • Nataf HC, Ricard Y (1996) 3SMAC: an a priori tomographic model of the upper mantle based on geophysical modeling. Phys Earth Planet Int 95:101–122

    Article  Google Scholar 

  • Paige C, Saunders M (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw 8:43–71

    Article  Google Scholar 

  • Park Y, Nyblade AA, Rodgers AJ, Al-Amri A (2008) S wave velocity structure of the Arabian Shield upper mantle from Rayleigh wave tomography. Geochem Geophys Geosyst 9, Q07020. doi:10.1029/2007GC001895

    Article  Google Scholar 

  • Pasyanos ME (2010) Lithospheric thickness modeled from long-period surface wave dispersion. Tectonophysics 481:38–50. doi:10.1016/j.tecto.2009.02.023

    Article  Google Scholar 

  • Pasyanos ME, Nyblade A (2007) A top to bottom lithospheric study of Africa and Arabia. Tectonophysics. 444: 27–44.

  • Priestley K, McKenzie D (2013) The relationship between shear wave velocity, temperature, attenuation and viscosity in the shallow part of the mantle. Earth Planet Sci Lett 831:78–91. doi:10.1016/j.epsl.2013.08.022

    Article  Google Scholar 

  • Priestley K, McKenzie D, Debayle E, Pilidou S (2008) The African upper mantle and its relationship to tectonics and surface geology. Geophys J Int 175:1108–1126

    Article  Google Scholar 

  • Ritsema J, van Heijst H (2000) New seismic model of the upper mantle beneath Africa. Geology 28:63–66

    Article  Google Scholar 

  • Sebai A, Stutzmann E, Montagner J-P, Sicilia D, Beucler E (2006) Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys Earth Planet Int 155:48–62

    Article  Google Scholar 

  • Tack L, Wingate MTD, De Waele B, Meert J, Belousova E, Griffin B, Tahon A, Fernandez-Alonso M (2010) The 1375Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res 180:63–84. doi:10.1016/j.precamres.2010.02.022

    Article  Google Scholar 

  • Toteu SF, van Schmus WR, Penaye J, Nyobé JB (1994) U-Pb and Sm-Nd evidence for Eburnian and Pan-African high-grade metamorphism in cratonic rocks of southern Cameroon. Precambrian Res 67:321–347

    Article  Google Scholar 

  • Tugume F, Nyblade A, Julia J (2012) Moho depths and Poisson’s ratios of Precambrian crust in East Africa: Evidence for similarities in Archean and Proterozoic crustal structure. Earth Planet Sci Lett 355–356:73–81. doi:10.1016/j.epsl.2012.08.041

    Article  Google Scholar 

  • Vicat J-P, Pouclet A, Nkoumbou C, Mounagué AS (1997) Le volcanismefissuralnéoprotérozoïque des séries du Djainférieur, de Yokadouma (Cameroun) et de Nola (RCA)- Signification géotectonique. CR Acad Sci, Paris, Sci de la terreet des planètes 325:671–677

    Article  Google Scholar 

  • Walter MR, Veevers JJ, Calver CR, Grey K (1995) Neoproterozoic stratigraphy of the CentralianSuperbasin, Australia. Precambrian Res 73:173–195

    Article  Google Scholar 

Download references

Acknowledgement

We thank Maarten J. de Wit and an anonymous reviewer for helpful comments. This study has been funded by the National Science Foundation (Grants OISE-0530062, EAR-0440032, EAR-0824781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Nyblade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raveloson, A., Nyblade, A., Fishwick, S., Mangongolo, A., Master, S. (2015). The Upper Mantle Seismic Velocity Structure of South-Central Africa and the Seismic Architecture of Precambrian Lithosphere Beneath the Congo Basin. In: de Wit, M., Guillocheau, F., de Wit, M. (eds) Geology and Resource Potential of the Congo Basin. Regional Geology Reviews. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29482-2_1

Download citation

Publish with us

Policies and ethics