Skip to main content

Introduction to the Renormalization Group with Applications to Non-relativistic Quantum Electron Gases

  • Chapter
  • First Online:
Quantum Many Body Systems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2051))

  • 1662 Accesses

Abstract

In these lectures we review the rigorous work on many Fermions models which led to the first constructions of interacting Fermi liquids in two dimensions, and to the proof that they obey different scaling regimes depending on the shape of the Fermi surface. We also review progress on the three dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we order the pair (b(), e()), bcan be considered the “beginning” and ethe “end” of the line, which is equivalent to orient the line. However the ordinary real-variable Wick’s theorem does not require such an orientation, which becomes necessary only for complex or Grassmann Gaussian measures.

  2. 2.

    Correlation functions play this fundamental role in statistical mechanics.

  3. 3.

    However the functional space that supports this measure is not in general a space of smooth functions, but rather of distributions. This was already true for functional integrals such as those of Brownian motion, which are supported by continuous but not differentiable paths. Therefore “functional integrals” in quantum field theory should more appropriately be called “distributional integrals”.

  4. 4.

    Strictly speaking this is true only for semi-regular graphs, i.e. graphs without tadpoles, i.e. without lines which start and end at the same vertex, see [21].

  5. 5.

    Because the graphs with N = 2 are quadratically divergent we must Taylor expand the quasi local fat dots until we get convergent effects. Using parity and rotational symmetry, this generates only a logarithmically divergent ∫( ∇ ϕ). ( ∇ ϕ) term beyond the quadratically divergent ∫ϕ2. Furthermore this term starts only at n = 2 or two loops, because the first tadpole graph at N = 2, n = 1 is exactlylocal.

  6. 6.

    And also over vertex joints of graphs, just as in the universality theorem for the Tutte polynomial.

  7. 7.

    It is enough in fact to compute such weights for one-particle irreducible and one-vertex-irreducible graphs, then multiply them in the appropriate way for the general case.

  8. 8.

    This is usually easily done by taking some kind of “square roots” in momentum space.

  9. 9.

    The question of whether and how to remove that ultraviolet cutoff has been discussed extensively in the literature, but we consider it as unphysical for a non-relativistic model of condensed matter, which is certainly an effective theory at best.

References

  1. J. Glimm, A. Jaffe, Quantum Physics. A Functional Integral Point of View(McGraw Hill, New York, 1981)

    Google Scholar 

  2. R. Feynman, A. Hibbs, Quantum Mechanics and Path Integrals(McGraw Hill, New York, 1965)

    Google Scholar 

  3. M. Peskin, D.V. Schroeder (Contributor), An Introduction to Quantum Field Theory(Perseus Publishing, New York, 1995)

    Google Scholar 

  4. C. Itzykson, J.-B. Zuber, Quantum Field Theory(McGraw Hill, New York, 1980)

    Google Scholar 

  5. P. Ramond, Field Theory(Addison-Wesley, Boston, 1994)

    Google Scholar 

  6. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena(Oxford University Press, Oxford, 2002)

    Google Scholar 

  7. C. Itzykson, J.M Drouffe, Statistical Field Theory, vols. 1 and 2 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  8. G. Parisi, Statistical Field Theory(Perseus Publishing, New York, 1998)

    Google Scholar 

  9. V. Rivasseau, From Perturbative to Constructive Renormalization(Princeton University Press, Princeton, 1991)

    Google Scholar 

  10. J.P. Eckmann, J. Magnen, R. Sénéor, Decay properties and Borel summability for the Schwinger functions in P(ϕ)2theories. Comm. Math. Phys. 39, 251 (1975)

    Google Scholar 

  11. J. Magnen, R. Sénéor, Phase space cell expansion and Borel summability for the Euclidean ϕ3 4theory. Comm. Math. Phys. 56, 237 (1977)

    Google Scholar 

  12. A. Sokal, An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21, 261 (1980)

    Google Scholar 

  13. F. Bergeron, G. Labelle, P. Leroux, Combinatorial Species and Tree-like Structures(Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  14. V. Rivasseau et al., (Eds.) Constructive Physics. Lecture Notes in Physics, vol. 446 (Springer, Berlin, 1995)

    Google Scholar 

  15. V. Rivasseau, Constructive field theory and applications: Perspectives and open problems. J. Math. Phys. 41, 3764 (2000)

    Google Scholar 

  16. V. Rivasseau, Constructive matrix theory. J. High Energ. Phys. 09, 008 (2007) [arXiv:hep-ph/0706.1224]

    Google Scholar 

  17. J. Magnen, V. Rivasseau, Constructive field theory without tears. Ann. Henri Poincaré 9, 403–424 (2008), math/ph/0706.2457

    Google Scholar 

  18. R. Gurau, J. Magnen, V. Rivasseau, Tree quantum field theory. Ann. Henri Poincaré 10(5), 867–891 (2009) [arXiv:0807.4122]

    Google Scholar 

  19. V. Rivasseau, Constructive field theory in zero dimension. Adv. Math. Phys. 2009(2009). Article ID 180159 [arXiv:0906.3524]

    Google Scholar 

  20. V. Rivasseau, Z. Wang, How are Feynman graphs resummed by the loop vertex expansion [arXiv:1006.4617]

    Google Scholar 

  21. T. Krajewski, V. Rivasseau, A. Tanasa, Z. Wang, Topological graph polynomials and quantum field theory. Part I: Heat kernel theories. J. Noncommut. Geom. 4, 29–82 (2010) [arXiv:0811.0186]

    Google Scholar 

  22. K. Wilson, Renormalization group and critical phenomena, II Phase space cell analysis of critical behavior. Phys. Rev. B 4, 3184 (1974)

    Google Scholar 

  23. K. Hepp, Théorie de la renormalisation(Springer, Berlin, 1969)

    Google Scholar 

  24. N. Bogoliubov, O. Parasiuk, Acta Math. 97, 227 (1957)

    Google Scholar 

  25. W. Zimmermann, Convergence of Bogoliubov’s method for renormalization in momentum space. Comm. Math. Phys. 15, 208 (1969)

    Google Scholar 

  26. J. Polchinski, Nucl. Phys. B 231, 269 (1984)

    Google Scholar 

  27. C. Kopper, in Renormalization Theory Based on Flow Equations. Progress in Mathematics, vol. 251 (Springer, Berlin, 2007), pp. 161–174

    Google Scholar 

  28. M. Bergère, Y.M.P. Lam, Bogoliubov-Parasiuk theorem in the α-parametric representation. J. Math. Phys. 17, 1546 (1976)

    Google Scholar 

  29. M. Bergère, J.B. Zuber, Renormalization of Feynman amplitudes and parametric integral representation. Comm. Math. Phys. 35, 113 (1974)

    Google Scholar 

  30. C. de Calan, V. Rivasseau, Local existence of the Borel transform in Euclidean ϕ4 4. Comm. Math. Phys. 82, 69 (1981)

    Google Scholar 

  31. H. Grosse, R. Wulkenhaar, Renormalization of ϕ4-theory on noncommutative \({\mathbb{R}}^{4}\)in the matrix base. Comm. Math. Phys. 256(2), 305–374 (2005) [hep-th/0401128]

    Google Scholar 

  32. H. Grosse, R. Wulkenhaar, The beta-function in duality-covariant noncommutative ϕ4-theory. Eur. Phys. J. C35, 277–282 (2004) [hep-th/0402093]

    Google Scholar 

  33. M. Disertori, V. Rivasseau, Two and three loops beta function of non commutative Phi44 theory. Eur. Phys. J. C 50, 661 (2007) [arXiv:hep-th/0610224]

    Google Scholar 

  34. M. Disertori, R. Gurau, J. Magnen, V. Rivasseau, Vanishing of beta function of non commutative \({\Phi }_{4}^{4}\)theory to all orders. Phys. Lett. B 649, 95–102 (2007) [arXiv:hep-th/0612251]

    Google Scholar 

  35. J. Feldman, in Renormalization Group and Fermionic Functional Integrals. CRM Monograph Series, vol. 16 (1999) (AMS, Providence)

    Google Scholar 

  36. N. Nakanishi, Graph Theory and Feynman integrals(Gordon and Breach, New York, 1971)

    Google Scholar 

  37. K. Symanzik, in Local Quantum Theory, ed. by R. Jost (Varenna, 1968) (Academic, New York, 1969), p. 285

    Google Scholar 

  38. A. Abdesselam, The Grassmann-Berezin calculus and theorems of the matrix-tree type. Adv. Appl. Math. 33(1), 51–70 (2004)

    Google Scholar 

  39. D. Brydges, T. Kennedy, Mayer expansions and the Hamilton-Jacobi equation. J. Stat. Phys. 48, 19 (1987)

    Google Scholar 

  40. A. Abdesselam, V. Rivasseau, in Trees, Forests and Jungles: A Botanical Garden for Cluster Expansions. Constructive Physics, Lecture Notes in Physics, vol. 446 (Springer, Berlin, 1995) [arXiv:hep-th/9409094]

    Google Scholar 

  41. A. Lesniewski, Effective action for the Yukawa2quantum field theory. Comm. Math. Phys. 108, 437 (1987)

    Google Scholar 

  42. A. Abdesselam, V. Rivasseau, Explicit fermionic tree expansions. Lett. Math. Phys. 44(1), 77–88 (1998) [arXiv:cond-mat/9712055]

    Google Scholar 

  43. J. Feldman, J. Magnen, V. Rivasseau, E. Trubowitz, An infinite volume expansion for many Fermion Green’s functions. Helv. Phys. Acta 65, 679 (1992)

    Google Scholar 

  44. V. Rivasseau, Z. Wang, Loop vertex expansion for ϕ2ktheory in zero dimension. J. Math. Phys. 51(2010) [arXiv:1003.1037/092304]

    Google Scholar 

  45. G. Benfatto, G. Gallavotti, Perturbation theory of the Fermi surface in a quantum liquid. A general quasi-particle formalism and one dimensional systems. J. Stat. Phys. 59, 541 (1990)

    Google Scholar 

  46. J. Feldman, E. Trubowitz, Perturbation theory for many fermions systems. Helv. Phys. Acta 63, 156 (1990)

    Google Scholar 

  47. J. Feldman, E. Trubowitz, The flow of an electron-phonon system to the superconducting state. Helv. Phys. Acta 64, 213 (1991)

    Google Scholar 

  48. M. Disertori, V. Rivasseau, Interacting Fermi liquid in two dimensions at finite temperature. Part I: Convergent attributions. Comm. Math. Phys. 215, 251 (2000)

    Google Scholar 

  49. M. Disertori, V. Rivasseau, A rigorous proof of fermi liquid behavior for jellium two-dimensional interacting Fermions. Phys. Rev. Lett. 85, 361 (2000)

    Google Scholar 

  50. V. Rivasseau, The two dimensional Hubbard model at half-filling: I. Convergent contributions. J. Stat. Phys. 106, 693–722 (2002)

    Google Scholar 

  51. S. Afchain, J. Magnen, V. Rivasseau, Renormalization of the 2-point function of the Hubbard model at half-filling. Ann. Henri Poincaré 6, 399 (2005)

    Google Scholar 

  52. S. Afchain, J. Magnen, V. Rivasseau, The Hubbard model at half-filling. Part III: The lower bound on the self-energy. Ann. Henri Poincaré 6, 449 (2005)

    Google Scholar 

  53. G. Benfatto, A. Giuliani, V. Mastropietro, Low temperature analysis of two dimensional Fermi systems with symmetric Fermi surface. Ann. Henri Poincaré 4, 137 (2003)

    Google Scholar 

  54. G. Benfatto, A. Giuliani, V. Mastropietro, Fermi liquid behavior in the 2D Hubbard model at low temperatures. Ann. Henri Poincaré 7, 809 (2006)

    Google Scholar 

  55. A. Giuliani, V. Mastropietro, Rigorous construction of ground state correlations in graphene: Renormalization of the velocities and Ward identities. Phys. Rev. B 79, 201403(R) (2009)

    Google Scholar 

  56. A. Giuliani, V. Mastropietro, M. Porta, Lattice gauge theory model for graphene. Phys. Rev. B 82, 121418(R) (2010)

    Google Scholar 

  57. M. Salmhofer, Comm. Math. Phys. 194, 249 (1998)

    Google Scholar 

  58. J. Feldman, H. Knor̈rer, E. Trubowitz, A two dimensional Fermi Liquid. Comm. Math. Phys. 247, 1–319 (2004); Rev. Math. Phys. 15(9), 949–1169 (2003). Papers accessible at http://www.math.ubc.ca/feldman/fl.html

  59. G. Benfatto, G. Gallavotti, Renormalization Group(Princeton University Press, Princeton, 1995)

    Google Scholar 

  60. J. Feldman, J. Magnen, V. Rivasseau, E. Trubowitz, Two dimensional many Fermion systems as vector models. Europhys. Lett. 24, 521 (1993)

    Google Scholar 

  61. R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, Renormalization of non-commutative \({\Phi }_{4}^{4}\)field theory in xspace. Comm. Math. Phys. 267, 515 (2006)

    Google Scholar 

  62. P.W. Anderson, Luttinger liquid behavior of the normal metallic state of the 2D Hubbard model. Phys. Rev. Lett. 64, 1839–1841 (1990)

    Google Scholar 

  63. J. Magnen, V. Rivasseau, A single scale infinite volume expansion for three-dimensional many Fermion Green’s functions. Math. Phys. Electron. J. 1(3) (1995)

    Google Scholar 

  64. M. Disertori, J. Magnen, V. Rivasseau, Interacting Fermi liquid in three dimensions at finite temperature. Part I: Convergent contributions. Ann. Henri Poincaré 2, 733–806 (2001)

    Google Scholar 

  65. M. Disertori, J. Magnen, V. Rivasseau, Parametric cutoffs for interacting Fermi liquid, [arXiv:1105.4138] http://arxiv.org/abs/1105.4138

Download references

Acknowledgements

I thank J. Magnen, M. Disertori, M. Smerlak and L. Gouba for contributing various aspects of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rivasseau .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rivasseau, V. (2012). Introduction to the Renormalization Group with Applications to Non-relativistic Quantum Electron Gases. In: Quantum Many Body Systems. Lecture Notes in Mathematics(), vol 2051. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29511-9_1

Download citation

Publish with us

Policies and ethics