Skip to main content

Charge Group Partitioning in Biomolecular Simulation

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2012)

Abstract

Molecular simulation techniques are increasingly being used to study biomolecular systems at an atomic level. Such simulations rely on empirical force fields to represent the intermolecular interactions. There are many different force fields available|each based on a different set of assumptions and thus requiring different parametrization procedures. Recently, efforts have been made to fully automate the assignment of force-field parameters, including atomic partial charges, for novel molecules. In this work, we focus on a problem arising in the automated parametrization of molecules for use in combination with the gromos family of force fields: namely, the assignment of atoms to charge groups such that for every charge group the sum of the partial charges is ideally equal to its formal charge. In addition, charge groups are required to have size at most k. We show \(\mathcal{NP}\)-hardness and give an exact algorithm capable of solving practical problem instances to provable optimality in a fraction of a second.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition-based algorithm for vertex cover on planar graphs. Discrete Applied Mathematics 145(2), 219–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  3. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8(2), 227–284 (1987)

    Article  MathSciNet  Google Scholar 

  4. Berendsen, H.J.C., van der Spoel, D., Van Drunen, R.: GROMACS: a message-passing parallel molecular dynamics implementation. Com. Phys. Comm. 91(1-3), 43–56 (1995)

    Article  Google Scholar 

  5. Beveridge, D.L., DiCapua, F.M.: Free energy via molecular simulation: applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18(1), 431–492 (1989)

    Article  Google Scholar 

  6. Bodlaender, H.L.: NC-Algorithms for Graphs with Small Treewidth. In: van Leeuwen, J. (ed.) WG 1988. LNCS, vol. 344, pp. 1–10. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  7. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1-2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boggara, M.B.B., Faraone, A., Krishnamoorti, R.: Effect of pH and ibuprofen on the phospholipid bilayer bending modulus. J. Phys. Chem. B 114(24), 8061–8066 (2010)

    Article  Google Scholar 

  9. Brooks, B.R., Brooks III, C.L., Mackerell Jr., A.D., Nilsson, L., Petrella, R.J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, E.: CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 30(10, sp. iss. si), 1545–1614 (2009)

    Article  Google Scholar 

  10. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Article  Google Scholar 

  11. Dehof, A.K., Rurainski, A., Bui, Q.B.A., Böcker, S., Lenhof, H.-P., Hildebrandt, A.: Automated bond order assignment as an optimization problem. Bioinformatics 27(5), 619–625 (2011)

    Article  Google Scholar 

  12. Dyer, M., Frieze, A.: On the complexity of partitioning graphs into connected subgraphs. Discrete Applied Mathematics 10(2), 139–153 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gerber, P.R.: Charge distribution from a simple molecular orbital type calculation and non-bonding interaction terms in the force field mab. J. Comput.-Aided Mol. Des. 12(1), 37–51 (1998)

    Article  Google Scholar 

  14. Goto, S., Okuno, Y., Hattori, M., Nishioka, T., Kanehisa, M.: LIGAND: database of chemical compounds and reactions in biological pathways. Nucleic Acids Res. 30(1), 402–404 (2002)

    Article  Google Scholar 

  15. Horváth, T., Ramon, J., Wrobel, S.: Frequent subgraph mining in outerplanar graphs. Data Min. Knowl. Discov. 21(3), 472–508 (2010)

    Article  MathSciNet  Google Scholar 

  16. Jorgensen, W.L., Maxwell, D.S., Tirado-Rives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118(45), 11225–11236 (1996)

    Article  Google Scholar 

  17. Lemkul, J.A., Allen, W.J., Bevan, D.R.: Practical considerations for building GROMOS-compatible small-molecule topologies. J. Chem. Inf. Model. 50(12), 2221–2235 (2010)

    Article  Google Scholar 

  18. Malde, A.K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P.C., Oostenbrink, C., Mark, A.E.: An automated force field topology builder (ATB) and repository: version 1.0. J. Chem. Theory Comput. 7(12), 4026–4037 (2011)

    Article  Google Scholar 

  19. Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comp. Chem. 25(13), 1656–1676 (2004)

    Article  Google Scholar 

  20. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmid, N., Eichenberger, A., Choutko, A., Riniker, S., Winger, M., Mark, A.E., van Gunsteren, W.F.: Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011)

    Article  Google Scholar 

  22. Schüttelkopf, A.W., van Aalten, D.M.: PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. 60, 1355–1363 (2004)

    Google Scholar 

  23. Scott, W.R.P., Hunenberger, P.H., Tironi, I.G., Mark, A.E., Billeter, S.R., Fennen, J., Torda, A.E., Huber, T., Kruger, P., van Gunsteren, W.F.: The GROMOS biomolecular simulation program package. J. Phys. Chem. A 103(19), 3596–3607 (1999)

    Article  Google Scholar 

  24. Sharma, M., Khanna, S., Bulusu, G., Mitra, A.: Comparative modeling of thioredoxin glutathione reductase from Schistosoma mansoni: a multifunctional target for antischistosomal therapy. J. Mol. Graphics Model. 27(6), 665–675 (2009)

    Article  Google Scholar 

  25. Uehara, R., Factor, K.T.: The number of connected components in graphs and its applications

    Google Scholar 

  26. van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D.P., Glttli, A., Hünenberger, P.H., Kastenholz, M.A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N.F.A., Yu, H.B.: Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. 45(25), 4064–4092 (2006)

    Article  Google Scholar 

  27. Villa, A., Mark, A.E.: Calculation of the free energy of solvation for neutral analogs of amino acid side chains. J. Comp. Chem. 23(5), 548–553 (2002)

    Article  Google Scholar 

  28. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Graph complexity of chemical compounds in biological pathways. Genome Inform. 14, 376–377 (2003)

    Google Scholar 

  29. Yang, C., Zhu, X., Li, J., Shi, R.: Exploration of the mechanism for LPFFD inhibiting the formation of beta-sheet conformation of A beta(1-42) in water. J. Mol. Model. 16(4), 813–821 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Canzar, S. et al. (2012). Charge Group Partitioning in Biomolecular Simulation. In: Chor, B. (eds) Research in Computational Molecular Biology. RECOMB 2012. Lecture Notes in Computer Science(), vol 7262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29627-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29627-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29626-0

  • Online ISBN: 978-3-642-29627-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics