Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 169))

  • 2998 Accesses

Abstract

The analytical and numerical models and methods of waveguides and integrated transmission lines are reviewed in this Chapter. Among them are the separation of the variables method and the transverse resonance one. Engineering formulas obtained by the conformal technique for most used integrated transmission lines are given and the accuracy of them are considered. The strong numerical EM methods are represented here by the finite difference time domain techniques, transmission line matrix method, finite element method, and the integral equation models of transmission lines. There are 101 references given for the Readers who wish to obtain more knowledge on the EM theory of waveguides and transmission lines. 17 figures are included into the text of 43 pages to explain the waveguides and integrated transmission lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw Hill Co. (1953)

    Google Scholar 

  2. Miller, W.: Symmetry and Separation of Variables. Addison-Wesley (1977)

    Google Scholar 

  3. Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley (1989)

    Google Scholar 

  4. Sadiku, M.N.O.: Numerical Techniques in Electromagnetics. CRC Press (2001)

    Google Scholar 

  5. Garg, R.: Analytical and Computational Methods in Electromagnetics. Artech House (2009)

    Google Scholar 

  6. Felsen, L.B., Marcuvitz, N.: Radiation and Scattering of Waves. Prentice-Hall (1973)

    Google Scholar 

  7. Walter, C.H.: Traveling Wave Antennas. Dover Publ, N.Y (1970, 1965)

    Google Scholar 

  8. Bates, B.D., Staines, G.W.: Transverse Resonance Analysis Technique for Microwave and Millimeter-wave Circuits, DSTO-RR-0027, Dept. of Defence, USA (1995)

    Google Scholar 

  9. Gibbs, W.J.: Conformal Transformations in Electrical Engineering. Chapman & Hall, London (1958)

    MATH  Google Scholar 

  10. Wheeler, H.A.: Transmission-line properties of parallel wide strips by a conformal mapping approximation. IEEE Trans., Microw. Theory Tech. 12, 280–289 (1964)

    Article  Google Scholar 

  11. Wheeler, H.A.: Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans., Microw. Theory Tech. 13, 172–185 (1965)

    Article  Google Scholar 

  12. Cohn, S.B.: Characteristic impedance of the shielded strip transmission line. IRE Trans., Microw. Theory Tech. 2, 52–57 (1954)

    Article  Google Scholar 

  13. Gupta, K.C., Garg, R., Bahl, I.J.: Microstrip Lines and Slot Lines. Artech House Inc., Dedham (1979)

    Google Scholar 

  14. Wadell, B.C.: Transmission Line Design Handbook. Artech House (1991)

    Google Scholar 

  15. Mathaei, G., Young, L., Johnes, E.M.T.: Microwave Filters, Impedance-Matching Networks, and Coupling Structures. Artech House (1980)

    Google Scholar 

  16. Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Filters on multilayered microwave integrated circuits for antennas applications. In: Proc. Conf. Design and Computation of Strip Transmission Line Antennas, Sverdlovsk, Russia, pp. 72–76 (1982) (in Russian)

    Google Scholar 

  17. May, J.W., Rebeiz, G.M.: A 40-50-GHz SiGe 1:8 differential power divider using shielded broadside-coupled striplines. IEEE Trans., Microw. Theory Tech. 56, 1575–1581 (2008)

    Article  Google Scholar 

  18. Chirala, M.K., Nguen, C.: Multilayer design techniques for extremely miniaturized CMOS microwave and millimeter-wave distributed passive circuits. IEEE Trans., Microw. Theory Tech. 54, 4218–4224 (2006)

    Article  Google Scholar 

  19. Chirala, M.K., Guan, X., Nguyen, C.: Integrated multilayered on-chip inductors for compact CMOS RFICs and their use in a miniature distributed low-noise-amplifier design for ultra-wideband applications. IEEE Trans., Microw. Theory Tech. 56, 1783–1789 (2008)

    Article  Google Scholar 

  20. Oliner, A.A.: Equivalent circuits for discontinuities in balanced strip transmission line. IRE Trans. 3, 134–143 (1955)

    Article  Google Scholar 

  21. Menzel, W., Wolff, I.: A method for calculating the frequency-dependent properties of microstrip discontinuities. IEEE Trans., Microw. Theory Tech. 25, 107–112 (1977)

    Article  Google Scholar 

  22. Hammerstad, E., Jensen, O.: Accurate models for microstrip computer-aided design. In: 1980 IEEE MTT-S Int. Microw. Symp. Dig., pp. 407–409 (1980)

    Google Scholar 

  23. Asbesh, C.B., Garg, R.: Conformal mapping analysis of microstrip with finite strip thickness. In: Proc. APSYM 2006, Dept. of Electronics, CUSAT, India, December 14-16, pp. 27–30 (2006)

    Google Scholar 

  24. Wolff, I., Kompa, G., Mehran, R.: Calculation method for microstrip discontinuities and T-junctions. El. Lett. 8, 177–179 (1972)

    Article  Google Scholar 

  25. Getsinger, W.: Microstrip dispersion model. IEEE Trans., Microw. Theory Tech. 21, 34–39 (1973)

    Article  Google Scholar 

  26. Carlin, H.J.: A simplified circuit model for microstrip. IEEE Trans., Microw. Theory Tech. 21, 589–591 (1973)

    Article  Google Scholar 

  27. Kobayashi, M.: A dispersion formula satisfying recent requirements in microstrip lines. IEEE Trans., Microw. Theory Tech. 36, 1246–1250 (1988)

    Article  Google Scholar 

  28. Nefeodov, E.I., Fialkovskyi, A.T.: Strip Transmission Lines. Nauka, Moscow (1980) (in Russian)

    Google Scholar 

  29. Pramanick, P., Bharatia, P.: A new microstrip dispersion model. IEEE Trans., Microw. Theory Tech. 32, 1379–1384 (1984)

    Article  Google Scholar 

  30. Verma, A.K., Kumar, R.: New empirical unified dispersion model for shielded-, suspended-, and composite-substrate microstrip line for microwave and mm-wave applications. IEEE Trans., Microw. Theory Tech. 46, 1187–1192 (1998)

    Article  Google Scholar 

  31. Yamashita, E., Atsuki, K., Hirahata, T.: Microstrip dispersion in a wide-frequency band. IEEE Trans., Microw. Theory Tech. 29, 610–611 (1981)

    Article  Google Scholar 

  32. Hoffmann, R.K.: Handbook of Microwave Integrated Circuits. Artech House (1987)

    Google Scholar 

  33. Kompa, G.: Practical Microstrip Design and Applications. Artech House (2005)

    Google Scholar 

  34. Schevchenko, V.V.: Continuous Transitions in Open Waveguides (Electromagnetics). Golem Press (1972)

    Google Scholar 

  35. Oliner, A.A., Lee, K.S.: The nature of the leakage from higher modes on microstrip line. In: 1986 IEEE MTT-S Dig., pp. 57–60 (1986)

    Google Scholar 

  36. Michalski, K.A., Zheng, D.: Rigorous analysis of open microstrip lines of arbitrary cross-section in bound and leaky regimes. In: 1989 IEEE MTT-S Dig., pp. 787–790 (1989)

    Google Scholar 

  37. Ngihiem, D., Williams, J.T., Jackson, D.R., Oliner, A.A.: Existence of a leaky dominant mode on microstrip line with an isotropic substrate: Theory and measurement. In: 1993 IEEE MTT-S Dig., pp. 1291–1294 (1993)

    Google Scholar 

  38. Bagby, J.S., Lee, C.-H., Nyquist, D.P., Yuan, Y.: Identification of propagation regimes on integrated microstrip transmission lines. IEEE Trans., Microw. Theory Tech. 41, 1881–1894 (1993)

    Article  Google Scholar 

  39. Liu, J., Jackson, D.R., Liu, P., et al.: The propagation wavenumber for microstrip line in the first higher-order mode. In: ICMMT 2010 Proc., pp. 965–968 (2010)

    Google Scholar 

  40. van de Capelle, A.R., Luypaert, P.J.: Fundamental- and higher-order modes in open microstrip lines. El. Lett. 9(15), 345–346 (1973)

    Article  Google Scholar 

  41. Chen, S.-D., Tzuang, C.K.C.: Characteristic impedance and propagation of the first higher order microstrip mode in frequency and time domain. IEEE Trans., Microw. Theory Tech. 50, 1370–1379 (2002)

    Article  Google Scholar 

  42. Chiu, L.: Oversized microstrip line as differential guided-wave structure. El. Lett. 46(2), 144–145 (2010)

    Article  Google Scholar 

  43. Nefeodov, E.I.: Technical Electrodynamics. Academia Publ., Moscow (2008) (in Russian)

    Google Scholar 

  44. Liu, J., Long, Y.: Formulas for complex propagation constant of first higher mode of microstrip line. El. Lett. 44, 261–262 (2008)

    Article  Google Scholar 

  45. Rizzoli, V.: A unified variational solution to microstrip array problems. IEEE Trans., Microw. Theory Tech. 23, 223–234 (1975)

    Article  Google Scholar 

  46. Garg, R., Bhal, I.J.: Characteristics of coupled microstriplines. IEEE Trans., Microw. Theory Tech. 27, 700–705 (1979)

    Article  Google Scholar 

  47. Bedair, S.S., Sobhy, M.I.: Accurate formulas for computer-aided design of shielded microstrip lines. In: IEE Proc., vol. 127, pt. H, pp. 305–308 (December 1980)

    Google Scholar 

  48. Wan, C.: Analytically and accurately determined quasi-static parameters of coupled lines. IEEE Trans., Microw. Theory Tech. 44, 75–80 (1996)

    Article  Google Scholar 

  49. Abbosh, A.M.: Analytical closed-form solutions for different configurations of parallel-coupled microstrip lines. IET Microw. Antennas Propag. 3, 137–147 (2009)

    Article  Google Scholar 

  50. Carlin, H.J., Civalleri, P.P.: A coupled-line model for dispersion in parallel-coupled microstrips. IEEE Trans., Microw. Theory Tech. 23, 444–446 (1975)

    Article  Google Scholar 

  51. Tripathi, V.K.: A dispersion model for coupled microstrips. IEEE Trans., Microw. Theory Tech. 34, 66–71 (1986)

    Article  Google Scholar 

  52. Getsinger, W.J.: Dispersion of parallel-coupled microstrip. IEEE Trans., Microw. Theory Tech. 21, 144–145 (1973)

    Article  Google Scholar 

  53. Wen, C.P.: Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications. IEEE Trans., Microw. Theory Tech. 17, 1087–1090 (1969)

    Article  Google Scholar 

  54. Ghione, G., Naldi, C.U.: Coplanar waveguides for MMIC applications: Effect of upper shielding, conductor backing, finite extent ground planes, and line-to-line coupling. IEEE Trans., Microw. Theory Tech. 35, 260–267 (1987)

    Article  Google Scholar 

  55. Riazat, M., Majidi-Ahy, R., Feng, I.-J.: Propagation modes and dispersion characteristics of coplanar waveguides. IEEE Trans., Microw. Theory Tech. 38, 245–251 (1990)

    Article  Google Scholar 

  56. Ghione, G., Goano, M.: A closed-form CAD-oriented model for the high-frequency conductor attenuation of symmetrical coupled coplanar waveguides. IEEE Trans., Microw. Theory Tech. 45, 1065–1070 (1997)

    Article  Google Scholar 

  57. Ghione, G., Goano, M.: The influence of ground plane width on the ohmic losses of coplanar waveguides with finite lateral ground planes. IEEE Trans., Microw. Theory Tech. 45, 1640–1642 (1997)

    Article  Google Scholar 

  58. Gorur, A., Karpuz, C.: Analytical formulas for conductor-backed asymmetric CPW with one lateral ground plane. Microw. Opt. Lett. 22, 123–126 (1999)

    Article  Google Scholar 

  59. Edwards, T.C., Steer, M.B.: Foundation of Interconnect and Microstrip Design. J. Wiley & Sons, Ltd. (2000)

    Google Scholar 

  60. Jackson, R.W.: Coplanar waveguide vs. microstrip for millimeter wave integrated circuits. In: 1986 MTT-S Dig., pp. 699–702 (1986)

    Google Scholar 

  61. Chang, C.-N., Wong, Y.-C., Chen, C.H.: Full-wave analysis of coplanar waveguides by variational conformal mapping technique. IEEE Trans., Microw. Theory Tech. 38, 1339–1344 (1990)

    Article  Google Scholar 

  62. Ke, J.-Y., Chen, C.H.: Dispersion and attenuation characteristics of coplanar waveguides with finite metallization thickness and conductivity. IEEE Trans., Microw. Theory Tech. 43, 1128–1135 (1995)

    Article  Google Scholar 

  63. Simons, R.N.: Coplanar Waveguide Circuits, Components & Systems. J. Wiley & Sons (2001)

    Google Scholar 

  64. Wolff, I.: Coplanar Microwave Integrated Circuits. Wiley Interscience (2006)

    Google Scholar 

  65. Uzunoglu, N.K., Nikita, K.S., Kaklamani, D.I. (eds.): Applied Computational Electromagnetics. Springer (1999)

    Google Scholar 

  66. Taflove, A.T., Hagness, S.C.: Computational Electrodynamics. Artech House (2005)

    Google Scholar 

  67. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic medium. IEEE Trans., Antennas Propag. 14, 302–307 (1966)

    MATH  Google Scholar 

  68. Kron, G.: Equivalent circuit of the field equations of Maxwell. In: Proc. IRE, vol. 32, pp. 289–299 (May 1944)

    Google Scholar 

  69. Johns, P., Beurle, R.: Numerical solution of 2-dimensional scattering problems using a transmission-line matrix. Proc. IEEE 118, 1203–1208 (1971)

    Article  Google Scholar 

  70. Johns, P.B.: On the relationships between TLM and finite-difference methods for Maxwell equations. IEEE Trans., Microw. Theory Tech. 35, 60–61 (1987)

    Article  Google Scholar 

  71. Harrington, R.F.: Field Computation by Moment Methods. IEEE Press (1993)

    Google Scholar 

  72. Muskhelishvili, N.I.: Singular Integral Equations. Wolters-Noordhoff (1972)

    Google Scholar 

  73. Gakhov, F.D.: Boundary Value Problems. Pergamon Press (1966)

    Google Scholar 

  74. Lavrentiev, M.M.: Ill-posed Problems of Mathematical Physics and Analysis. Am. Math. Soc. (1986)

    Google Scholar 

  75. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill Posed Problems. V.H. Winston and Sons (1977)

    Google Scholar 

  76. Leonov, A.S.: On quasi-optimal choice of the regularization parameter in the Lavrentiev’s method. Siberian Math. J. 34(4), 117–126 (1993) (in Russian)

    Article  MathSciNet  Google Scholar 

  77. Vaganov, R.B., Katsenelenbaum, B.Z.: Foundation of the Diffraction Theory. Nauka, Moscow (1982) (in Russian)

    Google Scholar 

  78. Nikolskyi, V.V., Nikolskaya, T.I.: Electrodynamics and Wave Propagation. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  79. Tai, C.T.: Dyadic Green’s Functions in Electromagnetic Theory. Intex Educational Publ., Scranton (1971)

    Google Scholar 

  80. Kantorovich, L.V., Krylov, V.I.: Approximate Methods of Higher Analysis. John Wiley (1964) (Translated from Russian)

    Google Scholar 

  81. Krylov, A.N., et al.: Academician B. G. Galerkin. On the seventieth Anniversary of his birth. Vestnik Akademii Nauk SSSR 4, 91–94 (1941)

    Google Scholar 

  82. Zhang, W.-X.: Engineering Electromagnetism: Functional Method. Ellis Horwood (1991)

    Google Scholar 

  83. Marcuvitz, N.: Waveguide Handbook. Inst. of Eng. and Techn. Publ. (1986)

    Google Scholar 

  84. Mashkovzev, B.M., Zibisov, K.N., Emelin, B.F.: Theory of Waveguides. Nauka, Moscow (1966) (in Russian)

    Google Scholar 

  85. Lewin, L.: Theory of Waveguides. Newnes-Buttertworths, London (1975)

    Google Scholar 

  86. Mittra, R. (ed.): Computer Techniques for Electromagnetics. Pergamon Press (1973)

    Google Scholar 

  87. Nikolskii, V.V.: Variational Methods for Inner Boundary Value Problems of Electrodynamics. Nauka Publ., Moscow (1967) (in Russian)

    Google Scholar 

  88. Silvester, P.P., Ferrari, R.L.: Finite Elements for Electrical Engineers. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  89. Kouzaev, G.A., Kurushin, E.P., Neganov, V.A.: Numerical computations of a slot-transmission line. Izv. Vysshikh Utchebnykh Zavedeniy Radiofizika (Radiophysics) 23, 1041–1042 (1981) (in Russian)

    Google Scholar 

  90. Hofmann, H., Meinel, H., Adelseck, B.: New integrated components mm-wave components using finlines. In: 1978 IEEE MTT-S Microw. Symp. Dig., pp. 21–23 (1978)

    Google Scholar 

  91. Kouzaev, G.A.: Balanced slotted line. In: Gvozdev, V.I., Nefedov, E.I. (eds.) Microwave Three-Dimensional Integrated Circuits, pp. 45–50. Nauka Publ, Moscow (1985) (Invited Chapter,in Russian)

    Google Scholar 

  92. Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I.: Balanced slotted line. Theory and experiment. Radio Eng. Electron. Physics (Radiotekhnika i Elektronika) 30, 1050–1057 (1985)

    Google Scholar 

  93. Gvozdev, V.I., Kouzaev, G.A., Nefedov, E.I., Utkin, M.I.: Electrodynamical calculation of microwave volume integrated circuit components based on a balanced slotted line. J. Commun. Techn. Electronics (Radiotekhnika i Electronika) 33, 39–43 (1989)

    Google Scholar 

  94. Lerer, A.M., Mikhalevskyi, V.S., Zvetkovskaya, S.M.: Ribbed transmission line. Izv. Vuzov, Radioeklektronika 10(10), 46–50 (1981)

    Google Scholar 

  95. Kurushin, E.P., Kouzaev, G.A., Neganov, V.A., et al.: Microwave circulator. USSR Invention Certificate No 1080689 dated on, June 14 (1982)

    Google Scholar 

  96. Gvozdev, V.I., Golovinskaja, S.Y., Kouzaev, G.A., et al.: “Circulator,” USSR Invention Certificate, No 1712989 dated on, May 31 (1990)

    Google Scholar 

  97. Gazarov, V.M., Gvozdev, V.I., Kouzaev, G.A., et al.: Oscillator for microwave 3D-ICs. USSR Invention Certificate No 1830555 dated on, June 12 (1990)

    Google Scholar 

  98. Gvozdev, V.I., Gluschenko, A.G., Kouzaev, G.A., et al.: Amplifier. USSR Invention Certificate No 1775845 dated on, June 21 (1991)

    Google Scholar 

  99. Schwinger, J., Saxon, D.S.: Discontinuities in Waveguides. Gordon and Breach Sci. Publ. (1968)

    Google Scholar 

  100. Monteath, G.D.: Applications of the Electromagnetic Reciprocity Principle. Pergamon Press (1973)

    Google Scholar 

  101. Richmond, J.H.: On the variational aspects of the moment method. IEEE Trans., Antennas Propag. 39, 473–479 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guennadi A. Kouzaev .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Kouzaev, G.A. (2013). Theory of Waveguides. In: Applications of Advanced Electromagnetics. Lecture Notes in Electrical Engineering, vol 169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30310-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30310-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30309-8

  • Online ISBN: 978-3-642-30310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics