Skip to main content

Abstract

This chapter provides a detailed account of the key assumptions underlying the superposition model as well as the systematic derivation of its relevant formulas for the d-shell electronic configurations. Besides, examples and remarks are given for the specific applications of the superposition model to deal with local distortion or lattice relaxation, spin-Hamiltonian parameters, and orbit-lattice interaction when transition metal ions are doped in various crystal hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.W.H. Stevens, Proc. Phys. Soc. A 65 (1952) 209.

    Article  ADS  MATH  Google Scholar 

  2. B.R. Judd, Proc. Royal Soc. A 232 (1955) 458.

    Article  ADS  Google Scholar 

  3. B.R. Judd, Proc. Royal Soc. A 241 (1957) 414.

    Article  MathSciNet  ADS  Google Scholar 

  4. J.S. Griffith, The Theory of Transition Metal Ions, Cambridge University Press, 1961.

    Google Scholar 

  5. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals, New York: Interscience, 1968.

    Google Scholar 

  6. S. Hüfner, Optical Spectra of Transparent Rare Earth Compounds, New York: Academic Press, 1978.

    Google Scholar 

  7. C.A. Morrison, R.P. Leavitt, R. P, in: Handbook on the Physics and Chemistry of Rare Earths, Eds. K.A. Gschneidner, Jr. and L. Eyring, Vol. 5, North-Holland Publishing, Amsterdam, 1982, pp. 461–692.

    Google Scholar 

  8. C.A. Morrison, Crystal Fields for Transition-Metal Ions in Laser Host Materials, Berlin: Springer-Verlag, 1992.

    Book  Google Scholar 

  9. [9]-C. Görller-Walrand, K. Binnemans, in: Handbook on the Physics and Chemistry of Rare Earths, Eds. K.A. Gschneidner, Jr. and L. Eyring, Vol. 23, North-Holland, Amsterdam, 1996, pp. 121–283.

    Google Scholar 

  10. M.T. Hutchings, Solid State Phys. 16 (1964) 227.

    Article  Google Scholar 

  11. D.J. Newman, Adv. Phys. 20 (1971) 197.

    Article  ADS  Google Scholar 

  12. B.N. Figgis, M.A. Hitchman, Ligand Field Theory and Its Applications, New York: Wiley-VCH, 2000.

    Google Scholar 

  13. J. Mulak, Z. Gajek, The Effective Crystal Field Potential, Oxford: Elsevier, 2000.

    Google Scholar 

  14. S. Sugano, R.G. Shulman, Phys. Rev. 130 (1963) 506.

    Article  ADS  Google Scholar 

  15. S. Sugano, R.G. Shulman, Phys. Rev. 130 (1963) 517.

    Article  ADS  Google Scholar 

  16. J. Owen, J.H.M. Thornley, Rep. Prog. Phys. 29 (1966) 675.

    Article  ADS  Google Scholar 

  17. M.V. Eremin, A.A. Kornienko, Phys. Stat. Sol. (b), 79 (1977) 775.

    Article  ADS  Google Scholar 

  18. D.J. Newman, W. Urban, Adv. Phys. 24 (1975) 793.

    Article  ADS  Google Scholar 

  19. D.J. Newman, B. Ng, Rep. Prog. Phys. 52 (1989) 699.

    Article  ADS  Google Scholar 

  20. D.J. Newman, D.C. Price, W.A. Runciman, Am. Mineral. 63 (1978) 1278.

    Google Scholar 

  21. D.J. Newman, E. Siegel, J. Phys. C: Solid State Phys. 9 (1976) 4285.

    Article  ADS  Google Scholar 

  22. C.K. Jørgensen, R. Pappalardo, H.H. Schmidtke, J. Chem. Phys. 39 (1963) 1422.

    Article  ADS  Google Scholar 

  23. C.E. Schäffer, Struct. & Bond. 5 (1968) 68.

    Article  Google Scholar 

  24. K. Knox, R.G. Shulman, S. Sugano, Phys. Rev. 130 (1963) 512.

    Article  ADS  Google Scholar 

  25. D.M. Brink, G.R. Satchler, Angular Momentum, Oxford: Clarendon, 1968.

    Google Scholar 

  26. B.G. Wybourne, Spectroscopic Properties of Rare Earths, New York: Wiley-Inter-sciences. 1965.

    Google Scholar 

  27. [27]-D.J. Newman, B. Ng, (Eds.), Crystal Field Handbook, Cambridge, U.K.: Cambridge University Press, 2000.

    Google Scholar 

  28. C. Rudowicz, J. Phys. C: Solid State Phys. 20 (1987) 6033.

    Article  ADS  Google Scholar 

  29. D.R. Rosseinsky, I.A. Dorrity, Coord. Chem. Rev. 25 (1978) 31.

    Article  Google Scholar 

  30. M. Gerloch, R.C. Slade, Ligand-Field Parameters, Cambridge University Press, 1973.

    Google Scholar 

  31. Y.M. Chang, T.H. Yeom, Y.Y. Yeung, C. Rudowicz, J. Phys.: Condens. Matter 5 (1993) 6221.

    Article  ADS  Google Scholar 

  32. L.I. Levin, V.I. Cherpanov, Soviet Phys.: Solid State 25 (1983) 399.

    Google Scholar 

  33. M.G. Brik, Y.Y. Yeung, J. Phys. Chem. Solids 69 (2008) 2401.

    Article  ADS  Google Scholar 

  34. G. Gerloch, Magnetism and Ligand Field Theory, Cambridge: Cambridge University Press, 1983.

    Google Scholar 

  35. P. Porcher, M.C.D. Santos, O. Malta, Chem. Phys. 1 (1999) 397.

    Google Scholar 

  36. R.P. Leavitt, J. Chem. Phys. 77 (1982) 1661.

    Article  ADS  Google Scholar 

  37. Y.Y. Yeung, D.J. Newman, J. Chem. Phys. 82 (1985) 3747.

    Article  ADS  Google Scholar 

  38. Y.Y. Yeung, D.J. Newman, J. Chem. Phys. 84 (1986) 4470.

    Article  ADS  Google Scholar 

  39. F. Auzel, in: Energy Transfer Processes in Condensed Matter, (ed. B. Di Bartolo) Plenum, New York, 1984, pp. 511–520.

    Chapter  Google Scholar 

  40. [40]Y.Y. Yeung, in: Crystal Field Handbook, D.J. Newman and B. Ng (Eds.), Cambridge, U.K.: Cambridge University Press, 2000, pp. 160–175.

    Google Scholar 

  41. R.R. Sharma, T. P. Das, R. Orbach, Phys. Rev. 149 (1966) 257.

    Article  ADS  Google Scholar 

  42. R.R. Sharma, T. P. Das, R. Orbach, Phys. Rev. 155 (1967) 338.

    Article  ADS  Google Scholar 

  43. R.R. Sharma, T. P. Das, R. Orbach, Phys. Rev. 171 (1968) 378.

    Article  ADS  Google Scholar 

  44. A. Leble, J.J. Rousseau, J.C. Fayet, J. Phys. Chem. Solids 40 (1979) 1065.

    Article  ADS  Google Scholar 

  45. G. Lehmann, Phys. Stat. Solidi (b) 99 (1980) 623.

    Article  ADS  Google Scholar 

  46. H. Murrieta, F.J. López, J. Rubio, G. Aguilar, J. Phys. Soc. Jpn. 49 (1980) 499.

    Article  ADS  Google Scholar 

  47. A. Leble, J.J. Rousseau, J.C. Fayet, C. Jacoboni, Sol. State Commun. 43 (1982) 773.

    Article  ADS  Google Scholar 

  48. P. Novak, L. Vosika, Czech. J. Phys. B 33 (1983) 1134.

    Article  ADS  Google Scholar 

  49. Y.Y. Yeung, J. Phys. C: Sol. State Phys. 21 (1988) 2453–2461.

    Article  ADS  Google Scholar 

  50. Y.Y. Yeung, D.J. Newman, Phys. Rev. B 34 (1986) 2258.

    Article  ADS  Google Scholar 

  51. J.O. Rubio, H.S. Murrieta, G.S. Aguilar, J. Chem. Phys. 71 (1979) 4112.

    Article  ADS  Google Scholar 

  52. D. Bravo, F.J. López, J. Phys.: Condens. Matter 4 (1992) 10335.

    Article  ADS  Google Scholar 

  53. J. Qin, C. Rudowicz, Y.M. Chang, Y.Y. Yeung, Phys. Chem. Minerals 21 (1994) 532.

    Article  ADS  Google Scholar 

  54. Y.Y. Yeung, J. Qin, Y.M. Chang, C. Rudowicz, Phys. Chem. Minerals 21 (1994) 526.

    Article  ADS  Google Scholar 

  55. J. Kuriata, J.M. Baker, L. Sadlowski, I. Stefaniuk, T. Bodziony, J. Phys.: Condens. Matter 10 (1988) 407.

    Article  ADS  Google Scholar 

  56. M. Wildner, M. Andrut, Z. Kristallogr. 214 (1999) 216.

    Article  Google Scholar 

  57. J.M. Garcia-Lastra, J.A. Aramburu, M.T. Barriuso, M. Moreno, Rad. Eff. Def. Sol. 157 (2002) 931.

    Article  Google Scholar 

  58. K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution—A Practical Approach to Global Optimization, Berlin: Springer, 2005.

    MATH  Google Scholar 

  59. S.C. Abrahams, W. C. Hamilton, J.M. Reddy, J. Phys. Chem. Solids 2 (1966) 1013.

    Article  Google Scholar 

  60. S.C. Abrahams, W. C. Hamilton, J.M. Reddy, J. Phys. Chem. Solids 27 (1966) 1019.

    Article  ADS  Google Scholar 

  61. S.C. Abrahams, J.M. Reddy, J.L. Bernstein, J. Phys. Chem. Solids 27 (1966) 997.

    Article  ADS  Google Scholar 

  62. Y.Y. Yeung, C. Rudowicz, Comp. Chem. 16 (1992) 207.

    Article  Google Scholar 

  63. Z.Y. Yang, C. Rudowicz, Y.Y. Yeung, J. Phys. Chem. Solids 64 (2003) 887.

    Article  ADS  Google Scholar 

  64. Z.Y. Yang, C. Rudowicz, Y.Y. Yeung, Physica B 348 (2004) 151.

    Article  ADS  Google Scholar 

  65. E. Camarillo, J. García-Solé, F. Cossó, F. Agulló-López, J.A. Sanz-García, Chem. Phys. Lett. 185 (1991) 505.

    Article  ADS  Google Scholar 

  66. R. Biederbick, A. Hofstaetter, A. Scharmann, Phys.Physics Stat. Sol. (b), 89 (1978) 449.

    Article  ADS  Google Scholar 

  67. R. Biederbick, A. Hofstaetter, A. Scharmann, G. Born, Phys.Physics Rev. B, 21 (1980) 3833.

    Article  ADS  Google Scholar 

  68. E.L. Carranza, R.T. Cox, J. Phys. Chem. Solids 40 (1979) 413.

    Article  ADS  Google Scholar 

  69. S. Febbraro, J. Phys. C: Solid State Phys 21 (1988) 2577.

    Article  ADS  Google Scholar 

  70. M.G. Zhao, M. Chiu, Phys. Rev. B, 52 (1995) 10043.

    Article  ADS  Google Scholar 

  71. W.C. Zheng, S.Y. Wu, P. Ren, Physica B 266 (1999) 162.

    Article  ADS  Google Scholar 

  72. X. Yang, X.Y. Kuang, H. Wang, Y. Wang, J. Phys. Chem. Solids 66 (2005) 1727.

    Article  ADS  Google Scholar 

  73. W.L. Yu, M.G. Zhao, Phys. Rev. B 37 (1988) 9254.

    Article  ADS  Google Scholar 

  74. Y.Y. Yeung, D.J. Newman, J. Phys. C: Solid St. Phys. 21 (1988) 537.

    Article  ADS  Google Scholar 

  75. H. Kanzaki, J. Phys. Chem. Solids 2 (1957) 107.

    Article  MathSciNet  ADS  Google Scholar 

  76. Y.Y. Yeung, J. Phys. C: Solid St. Phys. 21 (1988) 2453.

    Article  ADS  Google Scholar 

  77. B. Henderson, J.E. Wertz, Adv. Phys. 17 (1968) 749.

    Article  ADS  Google Scholar 

  78. J.O. Rubio, E.P. Munoz, J.O. Boldu, J. Chem. Phys. 70 (1979) 633.

    Article  ADS  Google Scholar 

  79. R. Buscher, G. Lehmann, Chem. Phys. Lett. 124 (1986) 202.

    Article  ADS  Google Scholar 

  80. Y.Y. Zhou, Phys. Rev. B 42 (1990) 917.

    Article  ADS  Google Scholar 

  81. W.C. Zheng, L. He, X.X. Wu, H.G. Liu, J. Phys. Chem. Solids 67 (2006) 1444.

    Article  ADS  Google Scholar 

  82. H. Donnerberg, M. Exner, C.R.A. Catlow, Phys. Rev. B, 47 (1993) 14.

    Article  ADS  Google Scholar 

  83. H. Donnerberg, Phys. Rev. B 50 (1994) 9053.

    Article  ADS  Google Scholar 

  84. J.E. Wertz, P.V. Auzins, Phys. Rev. 106 (1957) 484.

    Article  ADS  Google Scholar 

  85. J.E. Wertz, P.V. Auzins, J. Phys. Chem. Solids 28 (1967) 1557.

    Article  ADS  Google Scholar 

  86. W.M. Fairbank, G.K. Klauminzer, Phys. Rev. B 7 (1973) 500.

    Article  ADS  Google Scholar 

  87. Y.Y. Yeung, J. Phys.Physics: Condens. Matter 2 (1990) 2461.

    Article  ADS  Google Scholar 

  88. T.L. Choy, Y.Y. Yeung, Phys. Stat. Solid (b) 161 (1990) K107.

    Article  ADS  Google Scholar 

  89. R.M. Macfarlane, J. Chem. Phys. 47 (1967) 2066.

    Article  ADS  Google Scholar 

  90. Y.Y. Yeung, C. Rudowicz, J. Comput. Phys. 109 (1993) 150.

    Article  ADS  Google Scholar 

  91. D.J. Newman, J. Phys. C: Solid State Phys. 15 (1982) 6627.

    Article  ADS  Google Scholar 

  92. J.F. Clare, S.D. Devine, J. Phys. C: Sol. State Phys. 16 (1983) 4415.

    Article  ADS  Google Scholar 

  93. S.C. Chen, D.J. Newman, J. Phys. C: Sol. State Phys. 16 (1983) 5031.

    Article  ADS  Google Scholar 

  94. J. Mulak, Phys. Stat. Solidi (b), 239 (2003) 316.

    Article  ADS  Google Scholar 

  95. S.D. Devine, J. Phys. C: Sol. State Phys. 16 (1983) 5553.

    Article  ADS  Google Scholar 

  96. G.E. Stedman, J. Chem. Phys. 51 (1969) 4123.

    Article  ADS  Google Scholar 

  97. C. Linares, A. Louat, J. de Physique 36 (1975) 717.

    Article  Google Scholar 

  98. Y.Y. Yeung, D.J. Newman, J. Phys. C: Sol. State Phys. 19 (1986) 3877.

    Article  ADS  Google Scholar 

  99. Y.Y. Yeung, D.J. Newman, J. Chem. Chemistry Phys.Physics 86 (1987) 6717.

    ADS  Google Scholar 

  100. U. Köbler, A. Hoser, J.-U. Hoffmann, Physica B 382 (2006) 98.

    Article  ADS  Google Scholar 

  101. J. Kliava, J. Phys. C: Sol. State Phys. 15 (1982) 7017.

    Article  ADS  Google Scholar 

  102. J.D. Aiken, R.G. Finke, J. Mol. Catalysis A-Chem. 145 (1999) 1.

    Article  Google Scholar 

  103. G.K. Liu, X.Y. Chen, In; Gschneidner, K. A., Jr., Bunzli, J. C. G., Pecharsky, V. K., Eds. Vol. 37, Amsterdam, The Netherlands: North-Holland, 2007, pp. 99–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yeung, Y.Y. (2013). Superposition model and its applications. In: Avram, N.M., Brik, M.G. (eds) Optical Properties of 3d-Ions in Crystals: Spectroscopy and Crystal Field Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30838-3_3

Download citation

Publish with us

Policies and ethics