Skip to main content

Barrier Maintenance in Neovessels

  • Chapter
  • First Online:
Mechanical and Chemical Signaling in Angiogenesis

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 12))

  • 1450 Accesses

Abstract

A hallmark of many pathologies is vascular leak. The extent and severity of vascular leakage is broadly mediated by the integrity of the endothelial cell (EC) monolayer, which is in turn governed by three major interactions: cell–cell and cell-substrate contacts, soluble mediators, and biomechanical forces. Despite its tremendous medical importance, no specific therapies are available directly targeting the endothelium to prevent or reduce vascular permeability. Endothelial cells constantly equilibrate contractile and adhesive forces to maintain vascular barrier integrity. Intracellular signalling, and in particular the involvement of small Rho GTPases in endothelial hyperpermeability responses to many inflammatory stimuli through actin/myosin-mediated cellular contractility, is well-understood. Surprisingly less is known about maintenance of the basal endothelial barrier integrity. Recent live cell imaging studies revealed that highly confluent endothelial monolayers actively maintain barrier integrity by a continuous remodeling of their cell–cell contacts, accompanied by a rapid opening and closure of small inter-endothelial gaps. Moreover, evidence is accumulating that mechanical cues determined by the local microenvironment of ECs are of eminent importance to the integrity of the endothelial monolayer. Here we will review chemical and mechanical signaling involved in maintenance of the integrity of the endothelial barrier.

GPvNA was supported by a grant from the Dutch Heart Foundation (2011T072)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagy, J.A., Dvorak, A.M., Dvorak, H.F.: Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspect Med. 2(2), a006544 (2012)

    Article  Google Scholar 

  2. van Hinsbergh, V.W, van Nieuw Amerongen, G.P.: Intracellular signalling involved in modulating human endothelial barrier function. J. Anat. 200(6), 549–560 (2002)

    Article  Google Scholar 

  3. Krishnan, R., Klumpers, D.D., Park, C.Y., Rajendran, K., Trepat, X., van Bezu, J., van Hinsbergh, V.W., Carman, C.V., Brain, J.D., Fredberg J.J., Butler, J.P., van Nieuw Amerongen, G.P.: Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 300(1), C146–C154 (2011)

    Article  Google Scholar 

  4. Mehta, D., Malik, A.B.: Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86(1), 279–367 (2006)

    Article  Google Scholar 

  5. Goldenberg, N.M., Steinberg, B.E., Slutsky, A.S., Lee WL.: Broken barriers: a new take on sepsis pathogenesis. Sci. Transl. Med. 3(88):88ps25 (2011)

    Google Scholar 

  6. Gomez, G.A., McLachlan, R.W., Yap, A.S.: Productive tension: force-sensing and homeostasis of cell–cell junctions. Trends Cell Biol. 21(9), 499–505 (2011)

    Article  Google Scholar 

  7. Tarbell, J.M.: Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87(2), 320–330 (2010)

    Article  Google Scholar 

  8. Birukov, K.G.: Small GTPases in mechanosensitive regulation of endothelial barrier. Microvasc. Res. 77(1), 46–52 (2009)

    Article  Google Scholar 

  9. Essler, M., Amano, M., Kruse, H.J., Kaibuchi, K., Weber, P.C., Aepfelbacher, M.: Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J. Biol. Chem. 273(34), 21867–21874 (1998)

    Article  Google Scholar 

  10. van Nieuw Amerongen, G.P., Draijer, R., Vermeer, M.A., van Hinsbergh, V.W.: Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ. Res. 83(11), 1115–1123 (1998)

    Article  Google Scholar 

  11. Murakami, M., Simons, M.: Regulation of vascular integrity. J. Mol. Med. (Berl). 87(6), 571–582 (2009)

    Article  Google Scholar 

  12. Weis, S.M., Cheresh, D.A.: Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437(7058), 497–504 (2005)

    Article  Google Scholar 

  13. Doggett, T.M., Breslin, J.W.: Study of the actin cytoskeleton in live endothelial cells expressing GFP-actin. J. Vis. Exp. (57), e3187 (2011)

    Google Scholar 

  14. Spindler, V., Schlegel, N., Waschke, J.: Role of GTPases in control of microvascular permeability. Cardiovasc. Res. 87(2), 243–253 (2010)

    Article  Google Scholar 

  15. Wojciak-Stothard, B., Ridley, A.J.: Rho GTPases and the regulation of endothelial permeability. Vascul. Pharmacol. 39(4–5), 187–199 (2002)

    Article  Google Scholar 

  16. Hu, Y.L., Chien, S.: Dynamic motion of paxillin on actin filaments in living endothelial cells. Biochem. Biophys. Res. Commun. 357(4), 871–876 (2007)

    Article  Google Scholar 

  17. Opp, D., Wafula, B., Lim, J., Huang, E., Lo, J.C., Lo, C.M.: Use of electric cell-substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24(8), 2625–2629 (2009)

    Article  Google Scholar 

  18. Lo, C.M., Keese, C.R., Giaever, I.: Monitoring motion of confluent cells in tissue culture. Exp. Cell Res. 204(1), 102–109 (1993)

    Article  Google Scholar 

  19. van Nieuw Amerongen, G.P., van Delft, S., Vermeer, M.A., Collard, J.G., van Hinsbergh, V.W.: Activation of RhoA by thrombin in endothelial hyperpermeability: role of Rho kinase and protein tyrosine kinases. Circ. Res. 87(4), 335–340 (2000)

    Article  Google Scholar 

  20. Kouklis, P., Konstantoulaki, M., Vogel, S., Broman, M., Malik, A.B.: Cdc42 regulates the restoration of endothelial barrier function. Circ. Res. 94(2), 159–166 (2004)

    Article  Google Scholar 

  21. van Nieuw Amerongen, G.P., Beckers, C.M., Achekar, I.D., Zeeman, S., Musters, R.J., van Hinsbergh, V.W.: Involvement of Rho kinase in endothelial barrier maintenance. Arterioscler. Thromb. Vasc. Biol. 27(11), 2332–2339 (2007)

    Article  Google Scholar 

  22. van Nieuw Amerongen, G.P., van Hinsbergh, V.W.: Endogenous RhoA inhibitor protects endothelial barrier. Circ. Res. 101(1), 7–9 (2007)

    Article  Google Scholar 

  23. Wildenberg, G.A., Dohn, M.R., Carnahan, R.H., Davis, M.A., Lobdell, N.A., Settleman, J., Reynolds, A.B.: p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127(5), 1027–1039 (2006)

    Article  Google Scholar 

  24. David, S., Ghosh, C.C., Mukherjee, A., Parikh, S.M.: Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler. Thromb. Vasc. Biol. 31(11), 2643–2652 (2011)

    Article  Google Scholar 

  25. Nakagawa, M., Fukata, M., Yamaga, M., Itoh, N., Kaibuchi, K.: Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell–cell adhesion sites. J. Cell Sci. 114(Pt 10), 1829–1838 (2001)

    Google Scholar 

  26. Beckers, C.M., van Hinsbergh, V.W., van Nieuw Amerongen, G.P.: Driving Rho GTPase activity in endothelial cells regulates barrier integrity. Thromb. Haemost. 103(1), 40–55 (2010)

    Article  Google Scholar 

  27. Kleaveland, B., Zheng, X., Liu, J.J., Blum, Y., Tung, J.J., Zou, Z., Sweeney, S.M., Chen, M., Guo, L., Lu, M.M., Zhou, D., Kitajewski, J., Affolter, M., Ginsberg, M.H., Kahn, M.L.: Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat. Med. 15(2), 169–176 (2009)

    Article  Google Scholar 

  28. Whitehead, K.J., Chan, A.C., Navankasattusas, S., Koh, W., London, N.R., Ling, J., Mayo, A.H., Drakos, S.G., Jones, C.A., Zhu, W., Marchuk, D.A., Davis, G.E., Li, D.Y.: The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat. Med. 15(2), 177–184 (2009)

    Article  Google Scholar 

  29. Schubert, W., Frank, P.G., Woodman, S.E., Hyogo, H., Cohen, D.E., Chow, C.W., Lisanti, M.P.: Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J. Biol. Chem. 277(42), 40091–40098 (2002)

    Article  Google Scholar 

  30. Siddiqui, M.R., Komarova, Y.A., Vogel, S.M., Gao, X., Bonini, M.G., Rajasingh, J., Zhao, Y.Y., Brovkovych, V., Malik, A.B.: Caveolin-1-eNOS signaling promotes p190RhoGAP-A nitration and endothelial permeability. J. Cell Biol. 193(5), 841–850 (2011)

    Article  Google Scholar 

  31. Thibeault, S., Rautureau, Y., Oubaha, M., Faubert, D., Wilkes, B.C., Delisle, C., Gratton, J.P.: S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol. Cell 39(3), 468–476 (2010)

    Article  Google Scholar 

  32. van Nieuw Amerongen, G.P., van Hinsbergh, V.W.: Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul. Pharmacol. 39(4–5), 257–272 (2002)

    Article  Google Scholar 

  33. Augustin, H.G., Koh, G.Y., Thurston, G., Alitalo, K.: Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat. Rev. Mol. Cell Biol. 10(3), 165–177 (2009)

    Article  Google Scholar 

  34. van der Heijden, M., van Nieuw Amerongen, G.P., van Bezu, J., Paul, M.A., Groeneveld, A.B., van Hinsbergh, V.W.: Opposing effects of the angiopoietins on the thrombin-induced permeability of human pulmonary microvascular endothelial cells. PLoS One 6(8), e23448 (2011)

    Article  Google Scholar 

  35. van der Heijden, M., van Nieuw Amerongen, G.P., Chedamni, S., van Hinsbergh, V., Groeneveld, A.B.: The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert. Opin. Ther. Targets. 13(1), 39–53 (2009)

    Article  Google Scholar 

  36. Komarova, Y., Malik, A.B.: FGF signaling preserves the integrity of endothelial adherens junctions. Dev. Cell 15(3), 335–336 (2008)

    Article  Google Scholar 

  37. Murakami, M., Nguyen, L.T., Zhuang, Z.W., Moodie, K.L., Carmeliet, P., Stan, R.V., Simons, M.: The FGF system has a key role in regulating vascular integrity. J. Clin. Invest. 118(10), 3355–3366 (2008)

    Article  Google Scholar 

  38. Miyashita, Y., Ozawa, M.: Increased internalization of p120-uncoupled E-cadherin and a requirement for a dileucine motif in the cytoplasmic domain for endocytosis of the protein. J. Biol. Chem. 282(15), 11540–11548 (2007)

    Article  Google Scholar 

  39. Wang, L., Dudek, S.M.: Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc. Res. 77(1), 39–45 (2009)

    Article  Google Scholar 

  40. McVerry, B.J., Garcia, J.G.: Endothelial cell barrier regulation by sphingosine 1-phosphate. J. Cell Biochem. 92(6), 1075–1085 (2004)

    Article  Google Scholar 

  41. Lee, M.J., Thangada, S., Claffey, K.P., Ancellin, N., Liu, C.H., Kluk, M., Volpi, M., Sha’afi, R.I., Hla, T.: Vascular endothelial cell adherens junction assembly and morphogenesis induced by sphingosine-1-phosphate. Cell 99(3), 301–312 (1999)

    Article  Google Scholar 

  42. Sanchez, T., Estrada-Hernandez, T., Paik, J.H., Wu, M.T., Venkataraman, K., Brinkmann, V., Claffey, K., Hla, T.: Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J. Biol. Chem. 278(47), 47281–47290 (2003)

    Article  Google Scholar 

  43. Hoffman, B.D., Grashoff, C., Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475(7356), 316–323 (2011)

    Article  Google Scholar 

  44. Eyckmans, J., Boudou, T., Yu, X., Chen, C.S.: A Hitchhiker’s guide to mechanobiology. Dev. Cell 21(1), 35–47 (2011)

    Article  Google Scholar 

  45. Adji, A., O’Rourke, M.F., Namasivayam, M.: Arterial stiffness, its assessment, prognostic value, and implications for treatment. Am. J. Hypertens. 24(1), 5–17 (2011)

    Article  Google Scholar 

  46. Sell, D.R., Monnier, V.M.: Molecular basis of arterial stiffening role of glycation. Gerontology (2012) January 4

    Google Scholar 

  47. Lee, S., Zeiger, A., Maloney, J.M., Kotecki, M., Van Vliet, K.J., Herman, I.M.: Pericyte actomyosin-mediated contraction at the cell-material interface can modulate the microvascular niche. J. Phys.: Condens. Matter 22(19), 194115 (2010)

    Google Scholar 

  48. Huynh, J., Nishimura, N., Rana, K., Peloquin, J.M., Califano, J.P., Montague, C.R., King, M.R., Schaffer, C.B., Reinhart-King, C.A.: Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3(112):112ra122 (2011)

    Google Scholar 

  49. Califano, J.P., Reinhart-King, C.A.: Substrate stiffness and cell area predict cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1), 68–75 (2010)

    Article  Google Scholar 

  50. Liu, Z., Tan, J.L., Cohen, D.M., Yang, M.T., Sniadecki, N.J., Ruiz, S.A., Nelson, C.M., Chen, C.S.: Mechanical tugging force regulates the size of cell–cell junctions. Proc. Natl. Acad. Sci. U S A 107(22), 9944–9949 (2010)

    Article  Google Scholar 

  51. Maruthamuthu, V., Sabass, B., Schwarz, U.S., Gardel, M.L.: Cell-ECM traction force modulates endogenous tension at cell–cell contacts. Proc. Natl. Acad. Sci. U S A. 108(12), 4708–4713 (2011)

    Article  Google Scholar 

  52. Mege, R.M., Gavard, J., Lambert, M.: Regulation of cell–cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18(5), 541–548 (2006)

    Article  Google Scholar 

  53. Ladoux, B., Anon, E., Lambert, M., Rabodzey, A., Hersen, P., Buguin, A., Silberzan, P., Mege, R.M.: Strength dependence of cadherin-mediated adhesions. Biophys. J. 98(4), 534–542 (2010)

    Article  Google Scholar 

  54. Kametani, Y., Takeichi, M.: Basal-to-apical cadherin flow at cell junctions. Nat. Cell Biol. 9(1), 92–98 (2007)

    Article  Google Scholar 

  55. le Duc, Q., Shi, Q., Blonk, I., Sonnenberg, A., Wang, N., Leckband, D., de Rooij, J.: Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J. Cell Biol. 189(7), 1107–1115 (2010)

    Article  Google Scholar 

  56. Stroka, K.M.: randa-Espinoza H. Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118(6), 1632–1640 (2011)

    Article  Google Scholar 

  57. Ohayon, J., Gharib, A.M., Garcia, A., Heroux, J., Yazdani, S.K., Malve, M., Tracqui, P., Martinez, M.A., Doblare, M., Finet, G., Pettigrew, R.I.: Is arterial wall-strain stiffening an additional process responsible for atherosclerosis in coronary bifurcations?: an in vivo study based on dynamic CT and MRI. Am. J. Physiol. Heart Circ. Physiol. 301(3), H1097–H1106 (2011)

    Article  Google Scholar 

  58. Cancel, L.M., Tarbell, J.M.: The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am. J. Physiol. Heart Circ. Physiol. 300(3), H769–H776 (2011)

    Article  Google Scholar 

  59. Murakami, M.: Signaling required for blood vessel maintenance: molecular basis and pathological manifestations. Int. J. Vasc. Med. 2012, 293641 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geerten P. van Nieuw Amerongen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Nieuw Amerongen, G.P. (2013). Barrier Maintenance in Neovessels. In: Reinhart-King, C. (eds) Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30856-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30856-7_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30855-0

  • Online ISBN: 978-3-642-30856-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics