Skip to main content

Simulation Technologies

  • Chapter
  • First Online:
Micro Metal Forming

Part of the book series: Lecture Notes in Production Engineering ((LNPE))

Abstract

Based on the physical principle of the conservation of momentum, the linear elastic deformation of a solid body is described by the time dependent or stationary elasticity equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

apc :

Depth of cut (µm)

a 1pc , a 2pc :

Given depth of cut (µm)

a actpc (t):

Real depth of cut (µm)

a varpc :

Variation of the depth of cut (µm)

apcα :

Optimal depth of cut (µm)

a 1pcα :

Optimal depth of cut for a 1pc (µm)

a 2pcα :

Optimal depth of cut for a 2pc (μm)

Δapc :

Difference between the given a 1pc und a 2pc , the height of the ramp (µm)

ab:

Parameters that describe the stochastic spread of the grain orientations around a basic orientation

B:

Force coefficient

C :

Stiffness matrix (MPa)

C :

Stiffness matrix of polycristal (GPa)

c :

Stiffness matrix of monocrystal (GPa)

F:

Force (N)

Fo :

Surface force (N)

Ft, Fr, Fax,:

Force in tangential, radial and axial direction (N)

Fx, Fy, Fz :

Resulting force in three orthogonal directions x, y and z (N)

F*:

Vector of three force components (N)

f:

Body forces (N/m3)

g, g0, \( \tilde{g} \) :

Rotation

hc :

Chip thickness (mm)

i:

Refraction index

j:

Number of cutting edges

k:

Number of small independent rotations

lh :

Height of the holder (mm)

Lq :

Lebesgue saces

m:

Function

n:

Rotational speed of the tool [Hz (1/s)]

q:

Parameters

t:

Time (s)

v:

Velocity (mm/s)

vf :

Feed velocity (mm/min)

v actf :

Current feed velocity (mm/s)

w:

Acement/deformation vector (m)

x:

Coordinate in x-direction (mm)

y:

Coordinate in y-direction (mm)

z:

Coordinate in z-direction (mm)

A :

Operator

α :

Regularisation parameter

γ :

run out angle [° (deg)]

δ :

Deflection (µm)

δt, δr, δax:

Deflection in radial, tangential and axial direction (µm)

δ v :

Virtual displacement (m)

Δ:

Difference (µm)

Δx:

Length of the ramp (mm)

ε :

strain tensor

ε, εel, εin:

Strain tensors

εxx,εyy,εzz,εxy,εxz,εyz:

strain tensor components

ζ :

orthogonal basis

θ1, θ2, θ3 :

Euler angle (rad)

η:

run out vector (µm)

ηx :

Run out vector in x direction (µm)

ηy :

Run out vector in y direction (µm)

υ :

variable

ξ :

Integration variable

ρ :

Density (kg/m3)

σ :

Stress tensor (MPa)

σ ij :

components of stress tensor (MPa)

\( \bar{\sigma } \) :

Averaged Stress tensor in RVE (MPa)

Φ :

Penalty functional

\( \phi \) :

accumulated plastic strain

φ :

Rotational angle [° (Deg)]

Ω :

Rotation matrix

References

  1. Simo, J.C., Huges, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    MATH  Google Scholar 

  2. Souza Neto, E.A. de, Peric, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester (2008)

    Google Scholar 

  3. Roters, F., Eisenlohr, P., Bieler, T.R., Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  4. Nemat-Nasser, S.: Plasticity: A Treatise on Finite Deformation of Heterogeneous Inelastic Materials. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  5. Feyel, F.: A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192, 3233–3244 (2003)

    Article  MATH  Google Scholar 

  6. Cailletaud, G., Forest, S., Jeulin, D., Feyel, F., Galliet, I., Mounoury, V., Quilici, S.: Some elements of microstructural mechanics. Comput. Mater. Sci. 27, 351–374 (2003)

    Article  Google Scholar 

  7. Montalvo-Urquizo, J., Bobrov, P., Schmidt, A., Wosniok, W.: Elastic responses of texturized microscale materials using FEM simulations and stochastic material properties. Mech. Mater. 47, 1–10 (2012)

    Article  Google Scholar 

  8. Böhlke, T., Jöchen, K., Kraft, O., Löhe, D., Schulze, V.: Elastic properties of polycrystalline microcomponents. Mech. Mater. 42, 11–23 (2010)

    Article  Google Scholar 

  9. Lütjens, J., Bobrov, P., Hunkel, M., Wosniok, W.: Towards a distribution-based formulation of FEM for micro-scale components. Procedia Eng. 10, 1663–1669 (2011)

    Article  Google Scholar 

  10. Emrich, A., Liewald, M., Ruf, G.: Stochastic analysis in FE-simulation of sheet metal forming as a key enabler for a robust production process. In: Forming Technology Forum, 17–18 May 2011, pp 31–36. IVP, ETH Zurich, Switzerland (2011)

    Google Scholar 

  11. Kocks, U., Tomé, C., Wenk, H.-R., Mecking, H.: Texture and anisotropy: Preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Montalvo-Urquizo, J.: Simulation of material response in thin metallic materials using a mechanic-stochastic model. In: Boudouvis, A.G., Stavroulakis, G.E. (eds.) Proceedings of the GRACM. GRACM Athens (2011)

    Google Scholar 

  13. Parthasarathy, K.: The central limit theorem for the rotation group. Theor. Prob. Appl. 9, 273–282 (1964)

    Google Scholar 

  14. Borovkov, M., Savyolova, T.: Approximation of the class of canonical normal distributions by means of the method of random rotations in the texture analysis. Ind. Lab. 68, 16–21 (2002)

    Google Scholar 

  15. Bobrov, P., Montalvo-Urquizo, J., Lütjens, J., Brannath, W., Wosniok, W., Schmidt, A., Hunkel, M.: Ein stochastisches Modell zur Rekonstruktion elastischer Eigenschaften für texturierte Metalle. In: Kraft, O., Haug, A., Vollertsen, F., Büttgenbach, S. (eds.) Kolloquium Mikroproduktion und Abschlusskolloquium SFB 499, pp 183–189. KIT Scientific Report 7591, Karlsruhe (2011)

    Google Scholar 

  16. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems, volume 375 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (2000)

    Google Scholar 

  17. Piotrowska-Kurczewski, I., Vehmeyer, J.: Simulation model for micro-milling operations and surface generation. Adv. Mater. Res. 223, 849–858 (2011)

    Article  Google Scholar 

  18. Vollertsen, F.: Size effects in micro forming. Key Eng. Mater. 473, 3–12 (2010). doi:10.4028/www.scientific.net/KEM.473.3

    Article  Google Scholar 

  19. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge University Press, Cambridge (2000). doi:10.1115/1.1399383

  20. Piotrowska, I., Brandt, C., Karimi, H.R., Maass, P.: Mathematical model of micro turning process. Int. J. Adv. Manuf. Technol. 45(1), 33–40 (2009)

    Article  Google Scholar 

  21. Brandt, C., Niebsch, J., Ramlau, R., Maass, P.: Modeling the influence of unbalances for ultra-precision cutting processes. Zeitschrift für Angewandte Mathematik und Mechanik 91(10), 795–808 (2011)

    Article  MATH  Google Scholar 

  22. Hömberg, D., Mense, C., Rott, O.: A comparison of analytical cutting force models. WIAS Preprint 1151

    Google Scholar 

  23. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  24. Brandt, C., Maass, P., Piotrowska-Kurczewski, I., Schiffler, S., Riemer, O., Brinksmeier, E.: Mathematical methods for optimizing high precision cutting operations. Int. J. Nanomanuf. 8(4), 306–325 (2012). doi:10.1504/IJNM.2012.048580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter Maaß , Jonathan Montalvo-Urquizo , Jonathan Montalvo-Urquizo or Peter Maaß .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maaß, P. (2013). Simulation Technologies. In: Vollertsen, F. (eds) Micro Metal Forming. Lecture Notes in Production Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30916-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30916-8_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30915-1

  • Online ISBN: 978-3-642-30916-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics