Skip to main content

Introduction

  • Chapter
  • First Online:
Theory of Bilayer Graphene Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 1312 Accesses

Abstract

With many models in physics, it is much easier to conceive a Gedankenexperiment and analyse it on paper, rather than prepare a real-life experiment. It is definitely the case when imagining a single plane of carbon atoms arranged in a honeycomb (hexagonal) pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to Thomson’s ISI Web of Knowledge data.

References

  1. J.D. Bernal, The structure of graphite. Proc. Royal Soc. A 106, 749 (1924)

    Article  ADS  Google Scholar 

  2. P.R. Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  3. J.W. McClure, Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  4. J.C. Slonczewski, P.R. Weiss, Band structure of graphite. Phys. Rev. 109, 272 (1958)

    Article  ADS  Google Scholar 

  5. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, \(C_{60}\): Buckminsterfullerene. Nature 318, 162 (1985)

    Article  ADS  Google Scholar 

  6. S. Ijima, Helical microtubules of graphite carbon. Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  7. S. Ijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  8. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  9. K.S. Novoselov, D. Jiang, T. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proc. Natl Acad. Sci. U S A 102, 10451 (2005)

    Article  ADS  Google Scholar 

  10. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  11. Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of quantum hall effect and Berry’s phase in graphene. Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  12. M.I. Katsnelson, Graphene: carbon in two dimensions. Mater. Today 10, 20 (2007)

    Article  Google Scholar 

  13. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  14. M.I. Katsnelson, K.S. Novoselov, Graphene: New bridge between condensed matter physics and quantum electrodynamics. Solid State Commun. 143, 3 (2007)

    Article  ADS  Google Scholar 

  15. A.K. Geim, Graphene: Status and prospects. Science 324, 1530 (2009)

    Article  ADS  Google Scholar 

  16. D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, T. Chakraborty, Properties of graphene: a theoretical perspective. Adv. Phys. 59, 261 (2010)

    Article  ADS  Google Scholar 

  17. J. Hass, W.A. de Heer, E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. J. Phys. Condens. Matter 20, 323202 (2008)

    Article  Google Scholar 

  18. J. Wintterlin, M.-L. Bocquet, Graphene on metal surfaces. Surf. Sci. 603, 1841 (2009)

    Article  ADS  Google Scholar 

  19. M. Orlita, M. Potemski, Dirac electronic states in graphene systems: optical spectroscopy studies. Semicond. Sci. Technol. 25, 063001 (2010)

    Article  ADS  Google Scholar 

  20. A.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007)

    Article  ADS  Google Scholar 

  21. N. Ferralis, Probing mechanical properties of graphene with Raman spectroscopy. J. Mater. Sci. 97, 5135 (2010)

    Article  ADS  Google Scholar 

  22. A. Bostwick, K.V. Emtsev, K. Horn, E. Huwald, L. Ley, J.L. McChesney, T. Ohta, J. Riley, E. Rotenberg, F. Speck, T. Seyller, Photoemission studies of graphene on SiC: growth, interface, and electronic structure. Adv. Solid State Phys. 47, 159 (2008)

    Article  ADS  Google Scholar 

  23. K.S. Novoselov, S.V. Morozov, T.M.G. Mohinddin, L.A. Ponomarenko, D.C. Elias, R. Yang, I.I. Barbolina, P. Blake, T.J. Booth, D. Jiang, J. Giesbers, E.W. Hill, A.K. Geim, Electronic properties of graphene. Phys. Status Solibi B 244, 4106 (2007)

    Article  ADS  Google Scholar 

  24. C.W.J. Beenakker, Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337 (2008)

    Article  ADS  Google Scholar 

  25. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  26. A. Bostwick, J.L. McChesney, T. Ohta, E. Rotenberg, T. Seyller, K. Horn, Experimental studies of the electronic structure of graphene. Prog. Surf. Sci. 84, 380 (2009)

    Article  ADS  Google Scholar 

  27. N.M.R. Peres, The transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673 (2010)

    Article  ADS  Google Scholar 

  28. S. Das Sarma, S. Adam, E.H. Hwang, E. Rossi, Electronic transport in two dimensional graphene, arXiv:1003.4731 (2010)

    Google Scholar 

  29. C. Oshima, A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 9, 1 (1997)

    Article  ADS  Google Scholar 

  30. A. Charrier, A. Coati, T. Argunova, F. Thibaudau, Y. Garreau, R. Pinchaux, I. Forbeaux, J.-M. Debever, M. Sauvage-Simkin, J.-M. Themlin, Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys. 92, 2479 (2002)

    Article  ADS  Google Scholar 

  31. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Ultrathin epitaxial graphite: 2d electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 108, 19912 (2004)

    Article  Google Scholar 

  32. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  33. E. Rollings, G.-H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Federov, P.N. First, W.A. de Heer, A. Lanzara, Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 67, 2172 (2006)

    Article  ADS  Google Scholar 

  34. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, A. Tejede, A. Taleb-Ibrahimi, P. Le FĂšvre, F. Bertran, S. Vizzini, H. Enriquez, S. Chiang, P. Soukiassian, C. Berger, W.A. de Heer, A. Lanzara, E.H. Conrad, First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)

    Article  ADS  Google Scholar 

  35. Y.S. Dedkov, M. Fonin, C. Laubschat, A possible source of spin-polarized electrons: the inert graphene/Ni(111) system. Appl. Phys. Lett. 92, 052506 (2008)

    Article  ADS  Google Scholar 

  36. Y.S. Dedkov, M. Fonin, U. RĂŒdiger, C. Laubschat, Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 100, 107602 (2008)

    Article  ADS  Google Scholar 

  37. A. GrĂŒneis, D.V. Vyalikh, Tunable hybridization between electronic states of graphene and a metal surface. Phys. Rev. B 77, 193401 (2008)

    Article  ADS  Google Scholar 

  38. A. GrĂŒneis, K. Kummer, D.V. Vyalikh, Dynamics of graphene growth on a metal surface: a time-dependent photoemission study. New J. Phys. 11, 073050 (2009)

    Article  ADS  Google Scholar 

  39. I. Pletikosić, M. Kralj, P. Pervan, R. Brako, J. Coraux, A.T. N’Diaye, C. Busse, T. Michely, Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 102, 056808 (2009)

    Article  ADS  Google Scholar 

  40. A.L. VĂĄzquez de Parga, F. Calleja, B. Borca, M.C.G. Passegi Jr, J.J. Hinarejos, F. Guinea, R. Miranda, Periodically rippled graphene: growth and spatially resolved electronic structure. Phys. Rev. Lett. 100, 056807 (2008)

    Article  ADS  Google Scholar 

  41. P.W. Sutter, J.-I. Flege, E.A. Sutter, Epitaxial graphene on ruthenium. Nat. Mater. 7, 406 (2008)

    Article  ADS  Google Scholar 

  42. C. Enderlein, Y.S. Kim, A. Bostwick, E. Rotenberg, K. Horn, The formation of an energy gap in graphene on ruthenium by controlling the interface. New J. Phys. 12, 033014 (2010)

    Article  ADS  Google Scholar 

  43. Y. Lee, S. Bae, H. Jang, S. Jang, S.-E. Zhu, S.H. Sim, Y.I. Song, B.H. Hong, J.-H. Ahn, Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490 (2010)

    Article  ADS  Google Scholar 

  44. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  45. A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer, J. Kong, Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline ni surfaces. Nano Res. 2, 509 (2009)

    Article  Google Scholar 

  46. H.J. Park, J. Meyer, S. Roth, V. Skakalova, Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 48, 1088 (2010)

    Article  Google Scholar 

  47. Z.-Y. Juang, C.-Y. Wu, A.-Y. Lu, C.-Y. Su, K.-C. Leou, F.-R. Chen, C.-H. Tsai, Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48, 3169 (2010)

    Article  Google Scholar 

  48. M. Xu, D. Fujita, K. Sagisaka, E. Watanabe, N. Hanagata, Single-layer graphene nearly 100 % covering an entire substrate, arXiv:1006.5085 (2010)

    Google Scholar 

  49. J.-C. Charlier, J.-P. Michenaud, X. Gonze, First-principles study of the electronic properties of simple hexagonal graphite. Phys. Rev. B 46, 4531 (1992)

    Article  ADS  Google Scholar 

  50. M.S. Dresselhaus, G. Dresselhaus, Intercalation compounds of graphite. Adv. Phys. 30, 139 (1981)

    Article  ADS  Google Scholar 

  51. E. McCann, V.I. Fal’ko, Landau level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006)

    Article  ADS  Google Scholar 

  52. K. Kechedzhi, E. McCann, V. Fal’ko, B. Altshuler, Influence of trigonal warping on interference effects in bilayer graphene. Phys. Rev. Lett. 98, 176806 (2007)

    Article  ADS  Google Scholar 

  53. K. Kechedzhi, E. McCann, V. Fal’ko, H. Suzuura, T. Ando, B. Altshuler, Weak localization in monolayer and bilayer graphene. Eur. Phys. J. Special Top. 148, 39 (2007)

    Article  ADS  Google Scholar 

  54. K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, Unconventional quantum hall effect and Berry’s phase of 2pi in bilayer graphene. Nat. Phys. 2, 177 (2006)

    Article  Google Scholar 

  55. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Controlling the electronic structure of bilayer graphene. Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  56. A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, Quasiparticle dynamics in graphene. Nat. Phys. 3, 36 (2007)

    Article  Google Scholar 

  57. S.Y. Zhou, G.-H. Gweon, A.V. Fedorov, P.N. First, W.A. de Heer, D.-H. Lee, F. Guinea, A.H. Castro Neto, A. Lanzara, Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770 (2007)

    Article  ADS  Google Scholar 

  58. M. Mucha-KruczyƄski, O. Tsyplyatyev, A. Grishin, E. McCann, V.I. Fal’ko, A. Bostwick, E. Rotenberg, Characterization of graphene through anisotropy of constant-energy maps in angle-resolved photoemission. Phys. Rev. B 77, 195403 (2008)

    Article  ADS  Google Scholar 

  59. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006)

    Article  ADS  Google Scholar 

  60. Z. Jiang, E.A. Henriksen, L.C. Tung, Y.-J. Wang, M.E. Schwartz, M.Y. Han, P. Kim, H.L. Stormer, Infrared spectroscopy of Landau levels of graphene. Phys. Rev. Lett. 98, 197403 (2007)

    Article  ADS  Google Scholar 

  61. R.S. Deacon, K.-C. Chuang, R.J. Nicholas, K.S. Novoselov, A.K. Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers. Phys. Rev. B 76, 081406(R) (2007)

    Google Scholar 

  62. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Magnetospectroscopy of epitaxial few-layer graphene. Solid State Commun. 143, 123 (2007)

    Article  ADS  Google Scholar 

  63. E.A. Henriksen, Z. Jiang, L.-C. Tung, M.E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, H.L. Stormer, Cyclotron resonance in bilayer graphene. Phys. Rev. Lett. 100, 087403 (2008)

    Article  ADS  Google Scholar 

  64. P. PƂochocka, C. Faugeras, M. Orlita, M.L. Sadowski, G. Martinez, M. Potemski, M.O. Goerbig, J.-N. Fuchs, C. Berger, W.A. de Heer, High-energy limit of massless Dirac fermions in multilayer graphene using magneto-optical transmission spectroscopy. Phys. Rev. Lett. 100, 087401 (2008)

    Article  ADS  Google Scholar 

  65. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Approaching the Dirac point in high mobility multi-layer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)

    Article  ADS  Google Scholar 

  66. P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, M. Potemski, How perfect can graphene be? Phys. Rev. Lett. 103, 136403 (2009)

    Article  ADS  Google Scholar 

  67. E.A. Henriksen, P. Cadden-Zimansky, Z. Jiang, Z.Q. Li, L.-C. Tung, M.E. Schwartz, M. Takita, Y.-J. Wang, P. Kim, H.L. Stormer, Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy. Phys. Rev. Lett. 104, 067404 (2010)

    Article  ADS  Google Scholar 

  68. A.M. Witowski, M. Orlita, R. Stepniewski, A. Wysmolek, J.M. Baranowski, W. Strupinski, C. Faugeras, G. Martinez, M. Potemski, Quasi-classical cyclotron resonance of Dirac fermions in highly doped graphene, arXiv:1007.4153 (2010)

    Google Scholar 

  69. D.S.L. Abergel, V.I. Fal’ko, Optical and magneto-optical far-infrared properties of bilayer graphene. Phys. Rev. B 75, 155430 (2007)

    Article  ADS  Google Scholar 

  70. D.S.L. Abergel, E. McCann, V.I. Fal’ko, QHE and far infra-red properties of bilayer graphene in a strong magnetic field. Eur. Phys. J. Special Top. 148, 105 (2007)

    Article  ADS  Google Scholar 

  71. M. Mucha-KruczyƄski, D.S.L. Abergel, E. McCann, V.I. Fal’ko, On spectral properties of bilayer graphene: the effect of an SiC substrate and infrared magneto-spectroscopy. J. Phys. Condens. Matter 21, 344206 (2009)

    Article  Google Scholar 

  72. E. McCann, Asymmetry gap in the electronic band structure of bilayer graphene, Phys. Rev. B 74, 161403(R) (2006)

    Google Scholar 

  73. M. Mucha-KruczyƄski, E. McCann, V.I. Fal’ko, Influence of interlayer asymmetry on magneto-spectroscopy of bilayer graphene. Solid State Commun. 149, 1111 (2009)

    Article  ADS  Google Scholar 

  74. M.V. Klein, Electronic Raman scattering, in Light Scattering in Solids, vol. I, ed. by M. Cardona (Springer, Berlin, 1983)

    Google Scholar 

  75. M. Mucha-KruczyƄski, O. Kashuba, V.I. Fal’ko, Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene. Phys. Rev. B 82, 045405 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mucha-KruczyƄski .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mucha-KruczyƄski, M. (2013). Introduction. In: Theory of Bilayer Graphene Spectroscopy. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30936-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30936-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30935-9

  • Online ISBN: 978-3-642-30936-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics