Skip to main content

Mechanical Characterization of Graphene

  • Chapter
  • First Online:
Handbook of Nanomaterials Properties

Abstract

The emergence of monolayer carbon atom sheets, graphene, as a next generation advanced material, has potential applications in promising fields such as composite materials and energy storage. Graphene has exceptional mechanical properties, the most notable of which are ultrahigh strength and yield strain. Both experimental techniques and simulations have been performed for understanding mechanical properties of graphene such as, strength, yield strain, friction, and fracture behavior. This chapter summarizes the most recent findings on the mechanical characterization of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss PR (1958) Band structure of graphite. The State University, New Brunswick

    Google Scholar 

  2. Fradkin E (1986) Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory. Phys Rev B 33(5):3263–3268

    Article  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  Google Scholar 

  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  Google Scholar 

  5. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  Google Scholar 

  6. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  Google Scholar 

  7. Yang YT, Callegari C, Feng XL, Ekinci KL, Roukes ML (2006) Zeptogram-scale nanomechanical mass sensing. Nano Lett 6(4):583–586

    Article  Google Scholar 

  8. Chen CY, Rosenblatt S, Bolotin KI, Kalb W, Kim P, Kymissis I, Stormer HL, Heinz TF, Hone J (2009) Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat Nanotechnol 4(12):861–867

    Article  Google Scholar 

  9. Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514

    Article  Google Scholar 

  10. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: definitions and classification. Pure Appl Chem 71(12):16

    Article  Google Scholar 

  11. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  12. Jung I, Pelton M, Piner R, Dikin DA, Stankovich S, Watcharotone S, Hausner M, Ruoff RS (2007) Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett 7(12):3569–3575

    Article  Google Scholar 

  13. Kamat PV (2010) Graphene-based nanoarchitectures. Anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J Phys Chem Lett 1(2):520–527

    Article  Google Scholar 

  14. Blake P, Hill EW, Neto AHC, Novoselov KS, Jiang D, Yang R, Booth TJ, Geim AK (2007) Making graphene visible. Appl Phys Lett 91(6):63124

    Article  Google Scholar 

  15. Gao LB, Ren WC, Li F, Cheng HM (2008) Total color difference for rapid and accurate identification of graphene. ACS Nano 2(8):1625–1633

    Article  Google Scholar 

  16. Kim J, Cote LJ, Kim F, Huang JX (2010) Visualizing graphene based sheets by fluorescence quenching microscopy. J Am Chem Soc 132(1):260–267

    Article  Google Scholar 

  17. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  Google Scholar 

  18. Meyer JC, Kisielowski C, Erni R, Rossell MD, Crommie MF, Zettl A (2008) Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8(11):3582–3586

    Article  Google Scholar 

  19. Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Kern K, Kaiser U (2010) Atomic structure of reduced graphene oxide. Nano Lett 10(4):1144–1148

    Article  Google Scholar 

  20. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A (2009) Graphene at the edge: stability and dynamics. Science 323(5922):1705–1708

    Article  Google Scholar 

  21. Dan ZH, Xu Z, Xie (2011) Graphene: structure, fabrication method and characterization. Tsinghua University Press, Beijing

    Google Scholar 

  22. Li QY, Lee C, Carpick RW, Hone J (2010) Substrate effect on thickness-dependent friction on graphene. Phys Status Solidi B 247(11–12):2909–2914

    Article  Google Scholar 

  23. Lee C, Li QY, Kalb W, Liu XZ, Berger H, Carpick RW, Hone J (2010) Frictional characteristics of atomically thin sheets. Science 328(5974):76–80

    Article  Google Scholar 

  24. Filleter T, McChesney JL, Bostwick A, Rotenberg E, Emtsev KV, Seyller T, Horn K, Bennewitz R (2009) Friction and dissipation in epitaxial graphene films. Phys Rev Lett 102(8)

    Google Scholar 

  25. Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97(18)

    Google Scholar 

  26. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved raman spectroscopy of single- and few-layer graphene. Nano Lett 7(2):238–242

    Article  Google Scholar 

  27. Gong L, Kinloch IA, Young RJ, Riaz I, Jalil R, Novoselov KS (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22(24):2694–2697

    Article  Google Scholar 

  28. Huang M (2009) Studies of mechanically deformed single wall carbon nanotubes and graphene by optical spectroscopy. Columbia University

    Google Scholar 

  29. Wong CL, Annamalai M, Wang ZQ, Palaniapan M (2010) Characterization of nanomechanical graphene drum structures. J Micromech Microeng 20(11)

    Article  Google Scholar 

  30. Kysar JW (2008) Direct comparison between experiments and computations at the atomic length scale: a case study of graphene. Sci Model Simul 15(1–3):143–157

    Article  Google Scholar 

  31. Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31(2):790–795

    Article  Google Scholar 

  32. Bu H, Chen Y, Zou M, Yi H, Bi K, Ni Z (2009) Atomistic simulations of mechanical properties of graphene nanoribbons. Phys Lett A Gen, At Solid State Phys 373(37):3359–3362

    Google Scholar 

  33. Tsai JL, Tu JF (2010) Characterizing mechanical properties of graphite using molecular dynamics simulation. Mater Des 31(1):194–199

    Article  Google Scholar 

  34. Ni Z, Bu H, Zou M, Yi H, Bi K, Chen Y (2010) Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys B Condens Matter 405(5):1301–1306

    Article  Google Scholar 

  35. Scarpa F, Adhikari S, Srikantha Phani A (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20(6)

    Article  Google Scholar 

  36. Lee C, Wei XD, Li QY, Carpick R, Kysar JW, Hone J (2009) Elastic and frictional properties of graphene. Phys Status Solidi B Basic Solid State Phys 246(11–12):2562–2567

    Article  Google Scholar 

  37. Nemes-Incze P, Osvath Z, Kamaras K, Biro LP (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46(11):1435–1442

    Article  Google Scholar 

  38. Jun L-YL, Dae-Eun K, Whan-Kyun K, Seong C (2011) Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy. Surf Coat Technol 205:6

    Google Scholar 

  39. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6(11):858–861

    Article  Google Scholar 

  40. Abedpour N, Neek-Amal M, Asgari R, Shahbazi F, Nafari N, Tabar MRR (2007) Roughness of undoped graphene and its short-range induced gauge field. Phys Rev B 76(19)

    Article  Google Scholar 

  41. Kim EA, Neto AHC (2008) Graphene as an electronic membrane. EPL 84(5)

    Google Scholar 

  42. Wang Q (2010) Simulations of the bending rigidity of graphene. Phys Lett A 374(9):1180–1183

    Article  Google Scholar 

  43. Arroyo M, Belytschko T (2004) Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys Rev B 69(11)

    Article  Google Scholar 

  44. Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74(24)

    Google Scholar 

  45. Bunch JS, Verbridge SS, Alden JS, van der Zande AM, Parpia JM, Craighead HG, McEuen PL (2008) Impermeable atomic membranes from graphene sheets. Nano Lett 8(8):2458–2462

    Article  Google Scholar 

  46. Cranford SW, Buehler MJ (2011) Packing efficiency and accessible surface area of crumpled graphene. Phys Rev B 84(20)

    Article  Google Scholar 

  47. Liu P, Zhang YW (2011) A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. Carbon 49(11):3687–3697

    Article  Google Scholar 

  48. Ansari R, Motevalli B, Montazeri A, Ajori S (2011) Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation. Solid State Commun 151(17):1141–1146

    Article  Google Scholar 

  49. Khare R, Mielke SL, Paci JT, Zhang SL, Ballarini R, Schatz GC, Belytschko T (2007) Coupled quantum mechanical/molecular mechanical modeling of the fracture of defective carbon nanotubes and graphene sheets. Phys Rev B 75(7)

    Article  Google Scholar 

  50. Cao A, Qu J (2013) Atomistic simulation study of brittle failure in nanocrystalline graphene under uniaxial tension. Appl Phys Lett 102(7)

    Google Scholar 

  51. Zhang T, Li XY, Kadkhodaei S, Gao HJ (2012) Flaw insensitive fracture in nanocrystalline graphene. Nano Lett 12(9):4605–4610

    Article  Google Scholar 

  52. Espinosa HD, Bernal RA, Filleter T (2012) In situ TEM electromechanical testing of nanowires and nanotubes. Small 8(21):3233–3252

    Article  Google Scholar 

  53. Yong Z, Xinyu L, Changhai R, Yan Liang Z, Lixin D, Yu S (2011) Piezoresistivity characterization of synthetic silicon nanowires using a MEMS device. J Microelectromech Syst 20(4):959–967

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cao, C., Wu, X., Xi, X., Filleter, T., Sun, Y. (2014). Mechanical Characterization of Graphene. In: Bhushan, B., Luo, D., Schricker, S., Sigmund, W., Zauscher, S. (eds) Handbook of Nanomaterials Properties. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31107-9_35

Download citation

Publish with us

Policies and ethics