Skip to main content

Modeling Potential Shallow Landslides over Large Areas with SliDisp+

  • Chapter
  • First Online:
Landslide Science and Practice

Abstract

The deterministic model SliDisp+ calculates the potential detachment zones of shallow landslides. It is a grid-based model using an infinite slope analysis to calculate the safety factors F (ratio of retaining and driving forces) for each cell.

The input data consists of the slope topography, soil strength parameters, depths and shapes of potential shear planes, and the hydraulic behavior. The variables are derived from a digital elevation model (DEM), geological, geotechnical, and pedological documents, or field investigations. From this data the soil is classified over large areas. For each cell, the critical slope angle as well as the soil cohesion is determined.

Studies in several test areas showed that pedological aspects as well as joint water-input from underlying rock must be taken into account. Combined with the run-out model SliDepot, SliDisp+ calculates the extent of potential landslides over large areas and thus can be applied for spatial planning and optimized positioning of protection measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AGN (2004) Gefahreneinstufung Rutschungen i.w.S. Permanente Rutschungen, spontane Rutschungen und Hangmuren. Entwurf, Bern

    Google Scholar 

  • Agnew JA, Lyon S, Marchant PG, Collins VB, Lembo AJ, Steenhuis TS, Walter MT (2006) Identifying hydrologically sensitive areas: bridging the gap between science and application. J Environ Manage 76:63–76

    Article  Google Scholar 

  • Beven KJ, Quinn P, Romanowicz R, Freer J, Fisher J, Lamb R (1995) TOPMODEL and GRIDATB, a user guide to the distribution versions (95.02). CRES Technical Report 110 (2nd edn). Lancaster University

    Google Scholar 

  • Casadei M, Dietrich WE, Miller NL (2003) Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf Process Landf 28:925–950

    Article  Google Scholar 

  • Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand conference on geomechanics, Auckland, vol 1, pp 391–397

    Google Scholar 

  • Cox JW, Davies PJ (2002) The duration of soil saturation: point measurements versus a catchment-scale method. In: McVicar TR, Li R, Walker Jl, Fitzpatrick RW, Chanming L (eds) Regional water and soil assessment for managing sustainable agriculture in China and Australia. ACIAR monograph 84, pp 224–230

    Google Scholar 

  • Dahal RK (2008) Predictive modelling of rainfall-induced landslide hazard in the lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510

    Article  Google Scholar 

  • Dai FC, Lee CF (2002) Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology 42:213–228

    Article  Google Scholar 

  • DeRose RC (1996) Relationships between slope morphology, regolith depth, and the incidence of shallow landslides in eastern Taranaki hill country. Z Geomorphol Suppl. Bd. 105:49–60

    Google Scholar 

  • GEOTEST AG (2003) Technischer Bericht zur Gefahrenkarte Lauterbrunnen, Nr. 00063.5, Zollikofen (unpublished)

    Google Scholar 

  • GEOTEST AG (2007) Lauterbrunnen, Rutschung Gryfenbach, Synthese und Prognosen, Report Nr. 94152.26, Zollikofen (unpublished)

    Google Scholar 

  • GEOTEST AG (2011) Lauterbrunnen, Naturgefahren, Bericht zur Teilrevision Gefahrenkarte, Nr. 10151.01, Zollikofen (unpublished)

    Google Scholar 

  • Glade T, Anderson M, Crozier MJ (2005) Landslide hazard and risk. Wiley, Chichester, 824 p

    Book  Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modelling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102(3–4):214–226

    Article  Google Scholar 

  • Griffiths J, Mather AE, Hart AB (2002) Landslide susceptibility in the Rio Aguas catchment, SE Spain. Q J Eng Geol Hydrogeol 35:9–18

    Article  Google Scholar 

  • Guimarãres RF, Montgomery DR, Greenberg HM, Fernandes NF, Gomes RA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108

    Article  Google Scholar 

  • Günzler-Seiffert H (1962) Geologischer Atlas der Schweiz 1:25,000, Blatt 6 Lauterbrunnen. Schweizerische Geologische Kommission

    Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hales TC, Ford CR, Hwang T, Vose JM, Band LE (2009) Topographic and ecologic controls on root reinforcement. J Geophys Res 114:F03013. doi:10.1029/2008JF001168

    Article  Google Scholar 

  • Hölting B, Enke F (1996) Einführung in die Allgemeine und Angewandte Hydrogeologie, 5th edn. Stuttgart Verlag, Stuttgart

    Google Scholar 

  • Kalos MH, Whitlock PA (1986) Monte Carlo methods, vol 1, Basics. Wiley, New York

    Book  Google Scholar 

  • LaCasse S, Nadim F (1996) Uncertainties in characterising soil properties. Geotechnical Special Publication No. 58, vol 1, pp 49–75

    Google Scholar 

  • Liener S (2000) Zur Feststofflieferung in Wildbaechen. Dissertation, Geographica Bernensia, Bern

    Google Scholar 

  • Liener S, Kienholz H, Liniger M, Krummenacher B (1996) SDLISP – a procedure to locate landslide prone areas. In: Senneneset K (ed) Landslides. Balkema, Rotterdam, pp 279–284

    Google Scholar 

  • Lineback Gritzner M, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165

    Article  Google Scholar 

  • Liniger M (2006) Die Herausforderung der Gefahrenprognose bei Massenbewegungen: Rutsch- und Sturzprozesse. Bull Angew Geol 11(2):75–88

    Google Scholar 

  • Liu CN, Wu CC (2008) Integrating GIS and stress transfer mechanism in mapping rainfall-triggered landslide susceptibility. Eng Geol 101:60–74

    Article  Google Scholar 

  • Lourenco SDN, Sassa K, Fukuoka H (2006) Failure process and hydrologic response of a two layer physical model: implications for rainfall-induced landslides. Geomorphology 73:115–130

    Article  Google Scholar 

  • Meisina C, Scarabelli S (2007) A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 87:207–223

    Article  Google Scholar 

  • Paulin GL, Bursik M (2009) Assessment of landslides susceptibility – LOGISNET: a tool for multimethod, multilayer slope stability analysis. VDM Verlag Dr. Müller, Saarbrücken

    Google Scholar 

  • Quinn PF, Beven KJ, Lamb R (1995) The ln(a/tanb) index: how to calculate it and how to use it within the topmodel framework. Hydrol Process 9:161–182

    Article  Google Scholar 

  • Rickli Ch (2001) Vegetationswirkungen und Rutschungen. Untersuchung zum Einfluss der Vegetation auf oberflächennahe Rutschprozesse anhand der Unwetterereignisse Sachseln am 15.8.1997. Eidg. Forschungsanstalt (WSL), Birmensdorf, 97p

    Google Scholar 

  • Rickli C, Bucher H, (2003) Oberflächennahe Rutschungen, ausgelöst durch die Unwetter vom 15.–16.7.2002 im Napfgebiet und vom 31.8–1.9.2002 im Gebiet Appenzell. Eidg. Forschungsanstalt (WSL) und Bundesamt für Wasser und Geologie (BWG), 75p

    Google Scholar 

  • Riner R, (2009) Geotechnische Analysen von Lockergesteinen zur Modellierung von Rutschdispositionen im Untersuchungsgebiet Niesen. Masterarbeit Philosophisch-Naturwissenschaftliche Fakultät Universität Bern, 103 p (unpublished)

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini R, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Region of central Italy. Landslides 3:181–194

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech J 38:995–1024

    Article  Google Scholar 

  • Seconi S, Catani F (2008) Modeling soil thickness to enhance slope stability analysis at catchment scale. In: Abstract 33rd international geological congress, Oslo. http://www.cprm.gov.br/33IGC/1345585.html

  • Selby MH (1993) Hillslope materials and processes. Oxford University Press, Oxford

    Google Scholar 

  • Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. Water resource monograph 18. American Geophysical Union, Washington, DC

    Google Scholar 

  • Swissmap (2011) Topographic map Lauterbrunnen, Blatt 1228. www.swisstopo.ch

  • Tobler D, Krummenacher B (2004) Modellierung von Anrissgebieten für flachgründige Rutschungen und Hangmuren. In: Proceedings of the 2nd Swiss geoscience meeting, Lausanne

    Google Scholar 

  • Tobler D, Riner R, Pfeifer R (2011) Runout modeling of shallow landslides over large areas with SliDepot. In: Proceedings of the second world landslide forum, Rome

    Google Scholar 

  • VSS (1999) SN 670 010b. Bodenkennziffern, Zürich

    Google Scholar 

  • Wakatsuki T, Matsukura Y (2008) Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan, Catena. Trans Jpn Geomorphol Union 72:153–168

    Google Scholar 

  • Wittke W (1984) Felsmechanik – Grundlagen für wirtschaftliches Bauen im Fels. Springer, Berlin/Heidelberg, 1050 p

    Google Scholar 

  • Yang X, Chapman GA, Young MA, Gray JM (2005) Using compound topographic index to delineate soil landscape facets from digital elevation models for comprehensive coastal assessment. In: “MODSIM” conference, Melbourne, 12–15 Dec 2005

    Google Scholar 

  • Zolfaghari A, Heath AC (2008) A GIS application for assessing landslide hazard over a large area. Comput Geotech 35:278–285

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Karen Bennett and Nigel Hulbert to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tobler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tobler, D., Riner, R., Pfeifer, R. (2013). Modeling Potential Shallow Landslides over Large Areas with SliDisp+ . In: Margottini, C., Canuti, P., Sassa, K. (eds) Landslide Science and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31310-3_6

Download citation

Publish with us

Policies and ethics