Skip to main content

Using Chernoff’s Bounding Method for High-Performance Structural Break Detection and Forecast Error Reduction

  • Chapter
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 174))

  • 872 Accesses

Abstract

In this paper, a new method for detecting multiple structural breaks, i.e. undesired changes of signal behavior, is presented and applied to artificial and real-world data. It will be shown how Chernoff Bounds can be used for high-performance change-point detection after preprocessing arbitrary time series to binary random variables using adequate transformation routines. The algorithm is evaluated on artificial time series and compared to state of the art methods. The developed algorithm is competitive to state of the art methods in terms of classification errors but is considerably faster especially when dealing with long time series. Theoretical results on artificial data from part one of this paper are applied to real-world time series from a pharmaceutical wholesaler and show striking improvement in terms of forecast error reduction, thereby greatly improving forecast quality. In order to test the effect of structural break detection on forecast quality, state of the art forecast algorithms are applied to time series with and without previous application of structural break detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perron, P.: Dealing with Structural Breaks. Palgrave handbook of econometrics 1, 278–352 (2006)

    Google Scholar 

  2. Kawahara, Y., Sugiyama, M.: Change-point Detection in Time Series Data by Direct Density-Ratio Estimation. In: Proceedings of 2009 SIAM International Conference on Data Mining (SDM 2009), pp. 389–400 (2009)

    Google Scholar 

  3. Markou, M., Singh, S.: Novelty Detection: a Review–Part 1: Statistical Approaches. Signal Processing 83, 2481–2497 (2003)

    Article  MATH  Google Scholar 

  4. Guralnik, V., Srivastava, J.: Event Detection from Time Series Data. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–42. ACM (1999)

    Google Scholar 

  5. Ma, J., Perkins, S.: Time Series Novelty Detection Using One-class Support Vector Machines. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 1741–1745 (2003)

    Google Scholar 

  6. Ibaida, A., Khalil, I., Sufi, F.: Cardiac abnormalities detection from compressed ECG in wireless telemonitoring using principal components analysis (PCA). In: 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), pp. 207–212. IEEE (2010)

    Google Scholar 

  7. Feller, S., Chevalier, R., Morsili, S.: Parameter Disaggregation for High Dimensional Time Series Data on the Example of a Gas Turbine. In: Proceedings of the 38th ESReDA Seminar, Pécs, H, pp. 13–26 (2010)

    Google Scholar 

  8. Murad, U., Pinkas, G.: Unsupervised Profiling for Identifying Superimposed Fraud. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 251–261. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Fujimaki, R., Yairi, T., Machida, K.: An Approach to Spacecraft Anomaly Detection Problem Using Kernel Feature Space. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 401–410. ACM (2005)

    Google Scholar 

  10. Schwabacher, M., Oza, N., Matthews, B.: Unsupervised Anomaly Detection for Liquid-Fueled Rocket Propulsion Health Monitoring. In: Proceedings of the AIAA Infotech@ Aerospace Conference. American Institute for Aeronautics and Astronautics, Inc., Reston (2007)

    Google Scholar 

  11. Gustafsson, F.: Estimation and Change Detection of Tire-Road Friction Using the Wheel Slip. IEEE Control System Magazine 18, 42–49 (1998)

    Article  Google Scholar 

  12. Ide, T., Kashima, H.: Eigenspace-based Anomaly Detection in Computer Systems. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 440–449. ACM (2004)

    Google Scholar 

  13. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Computing Surveys (CSUR) 41, 1–58 (2009)

    Article  Google Scholar 

  14. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Application. Prentice-Hall, Inc. (1993)

    Google Scholar 

  15. Chernoff, H.: A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations. The Annals of Mathematical Statistics 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press (2007)

    Google Scholar 

  17. Hartigan, J., Wong, M.: Algorithm AS 136: A k-means Clustering Algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics) 28, 100–108 (1979)

    MATH  Google Scholar 

  18. Wadsworth, H.: Handbook of statistical methods for engineers and scientists. McGraw-Hill Professional (1997)

    Google Scholar 

  19. Tsay, R.: Analysis of Financial Time Series. Wiley-Interscience (2005)

    Google Scholar 

  20. Strang, G.: Wavelets and dilation equations: A brief introduction. Siam Review 31, 614–627 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feller, W.: An introduction to probability theory and its applications. Wiley-India (2009)

    Google Scholar 

  22. Wald, A.: Sequential Tests of Statistical Hypotheses. The Annals of Mathematical Statistics 16, 117–186 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  23. Herzog, J.: Dynamics Sensor Validation for Reusable Launch Vehicle Propulsion. Presented at 34th AIAA/ASME/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, US, July 13-15 (1998)

    Google Scholar 

  24. Taylor, J.: Multi-item sales forecasting with total and split exponential smoothing. Journal of the Operational Research Society (2010)

    Google Scholar 

  25. Gelper, S., Fried, R., Croux, C.: Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting 29, 285–300 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Holt, C.: Forecasting trends and seasonals by exponentially weighted moving averages. ONR Memorandum 52 (1957)

    Google Scholar 

  27. Brown, R.: Statistical forecasting for inventory control. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  28. Gardner Jr., E.: Exponential smoothing: The state of the art. Journal of Forecasting 4, 1–28 (1985)

    Article  Google Scholar 

  29. Makridakis, S., Wheelwright, S., Hyndman, R.: Forecasting methods and applications. Wiley-India (2008)

    Google Scholar 

  30. Ng, T., Skitmore, M., Wong, K.: Using genetic algorithms and linear regression analysis for private housing demand forecast. Building and Environment 43, 1171–1184 (2008)

    Article  Google Scholar 

  31. Xia, B., Zhao, C.: The Application of Multiple Regression Analysis Forecast in Economical Forecast: The Demand Forecast of Our Country Industry Lavation Machinery in the Year of 2008 and 2009. In: Second International Workshop on Knowledge Discovery and Data Mining, WKDD 2009, pp. 405–408 (2009)

    Google Scholar 

  32. Pinson, P., Nielsen, H., Madsen, H., Nielsen, T.: Local linear regression with adaptive orthogonal fitting for the wind power application. Statistics and Computing 18, 59–71 (2008)

    Article  MathSciNet  Google Scholar 

  33. Feller, S., Pauli, D., Kmiecik, F.: Robust AAKR and Modern Signal Transformation Methods for Fault Detection and Analysis. In: Proceedings of the 37th ESReDA Seminar, Baden, CH, pp. 57–63 (2009)

    Google Scholar 

  34. Zeileis, A., Leisch, F., Kleiber, C., Hornik, K.: Monitoring Structural Change in Dynamic Econometric Models. Journal of Applied Econometrics 20, 99–121 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Pauli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pauli, D., Lorion, Y., Feller, S., Rupp, B., Timm, I.J. (2013). Using Chernoff’s Bounding Method for High-Performance Structural Break Detection and Forecast Error Reduction. In: Ferrier, JL., Bernard, A., Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31353-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31353-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31352-3

  • Online ISBN: 978-3-642-31353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics