Skip to main content

Dynamic Obstacle Avoidance with Simultaneous Translational and Rotational Motion Control for Autonomous Mobile Robot

  • Chapter
Informatics in Control, Automation and Robotics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 174))

Abstract

This paper presents a real-time collision avoidance method with simultaneous control of both translational and rotational motion with consideration of a robot width for an autonomous omni-directional mobile robot. In the method, to take into consideration the robot’s size, a wide robot is regarded as a capsule-shaped case not a circle. With the proposed method, the wide robot can decide the direction of translational motion to avoid obstacles safely. In addition, the robot can decide the direction of the rotational motion in real time according to the situation to perform smooth motion. As an example of design method of the proposed method, novel control method based on the fuzzy potential method is proposed. To verify its effectiveness, several experiments using a real robot are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Du, Z., Qu, D., Yu, F., Xu, D.: A Hybrid Approach for Mobile Robot Path Planning in Dynamic Environments. In: Proc. IEEE Int. Conf. on Robotics and Biomimetics, pp. 1058–1063 (2007)

    Google Scholar 

  2. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. of Robotics Research 5(1), 90–98 (1986)

    Article  MathSciNet  Google Scholar 

  3. Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1398–1404 (1991)

    Google Scholar 

  4. Borenstein, J., Koren, Y.: Real-Time Obstacle Avoidance for Fast Mobile Robots. IEEE Trans. on Systems, Man and Cybernetics 19(5), 1179–1187 (1989)

    Article  Google Scholar 

  5. Borenstein, J., Koren, Y.: The Vector Field Histogram Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. on Robotics and Automation 7(3), 278–288 (1991)

    Article  Google Scholar 

  6. Lumelsky, V.J., Cheung, E.: Real Time Obstacle Collistion Avoidance in Teleoperated Whole Sensitive Robot Arm Manipulators. IEEE Trans. Systems, Man and Cybernetics 23(1), 194–203 (1993)

    Article  Google Scholar 

  7. Borenstein, J., Koren, Y.: The Vector Field Histogram Fast Obstacle Avoidance for Mobile Robots. IEEE Trans. on Robotics and Automation 7(3), 278–288 (1991)

    Article  Google Scholar 

  8. Dieter, F., Wolfram, B., Sebastian, T.: The Dynamic Window Approach to Collision Avoidance. IEEE Robotics and Automation 4(1), 1–23 (1997)

    Google Scholar 

  9. Kavraki, L.: Computation of Configuration Space Obstacles Using the Fast Fourier Transform. IEEE Trans. on Robotics and Automation 11(3), 408–413 (1995)

    Article  MathSciNet  Google Scholar 

  10. Wang, Y., Chirikjian, G.S.: A New Potential Field Method for Robot Path Planning. In: Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, pp. 977–982 (2000)

    Google Scholar 

  11. Takahashi, M., Suzuki, T., Matsumura, T., Yorozu, A.: Obstacle Avoidance with Simultaneous Translational and Rotational Motion Control for Autonomous Mobile Robot. In: Proc. of the 8th Int. Conf. on Informatics in Control, Automation and Robotics (2011)

    Google Scholar 

  12. Ambrose, R.O., Savely, R.T., Goza, S.M., Strawser, P., Diftler, M.A., Spain, I., Radford, N.: Mobile manipulation using NASA’s robonaut. In: Proc. IEEE ICRA, pp. 2104–2109 (2004)

    Google Scholar 

  13. Takahashi, M., Suzuki, T.: Multi Scale Moving Control Method for Autonomous Omni-directional Mobile Robot. In: Proc. of the 6th Int. Conf. on Informatics in Control, Automation and Robotics (2009)

    Google Scholar 

  14. Tsuzaki, R., Yoshida, K.: Motion Control Based on Fuzzy Potential Method for Autonomous Mobile Robot with Omnidirectional Vision. Journal of the Robotics Society of Japan 21(6), 656–662 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takahashi, M., Suzuki, T., Matsumura, T., Yorozu, A. (2013). Dynamic Obstacle Avoidance with Simultaneous Translational and Rotational Motion Control for Autonomous Mobile Robot. In: Ferrier, JL., Bernard, A., Gusikhin, O., Madani, K. (eds) Informatics in Control, Automation and Robotics. Lecture Notes in Electrical Engineering, vol 174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31353-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31353-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31352-3

  • Online ISBN: 978-3-642-31353-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics