Skip to main content

LEFT–Logical Expressions Feature Transformation: A Framework for Transformation of Symbolic Features

  • Conference paper
Advances in Neural Networks – ISNN 2012 (ISNN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7368))

Included in the following conference series:

  • 3238 Accesses

Abstract

The accuracy of a classifier relies heavily on the encoding and representation of input data. Many machine learning algorithms require that the input vectors be composed of numeric values on which arithmetic and comparison operators be applied. However, many real life applications involve the collection of data, which is symbolic or ‘nominal type’ data, on which these operators are not available. This paper presents a framework called logical expression feature transformation (LEFT), which can be used for mapping symbolic attributes to a continuous domain, for further processing by a learning machine. It is a generic method that can be used with any suitable clustering method and any appropriate distance metric. The proposed method was tested on synthetic and real life datasets. The results show that this framework not only achieves dimensionality reduction but also improves the accuracy of a classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons (2000)

    Google Scholar 

  2. Ralambondrainy, H.: A conceptual version of the k-means algorithm. Pattern Recognition Letters 16, 1147–1157 (1995)

    Article  Google Scholar 

  3. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  4. Hernández-Pereira, E., Suárez-Romero, J., Fontenla-Romero, O., Alonso-Betanzos, A.: Conversion methods for symbolic features: A comparison applied to an intrusion detection problem. Expert Systems with Applications 36, 10612–10617 (2009)

    Article  Google Scholar 

  5. Nagabhushan, P., Gowda, K.C., Diday, E.: Dimensionality reduction of symbolic data. Pattern Recognition Letters 16, 219–223 (1995)

    Article  Google Scholar 

  6. Michalski, R.S., Stepp, R.E.: Automated construction of classifications: conceptual clustering versus numerical taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(4), 396–410 (1983)

    Article  Google Scholar 

  7. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley and Sons (1990)

    Google Scholar 

  8. Huang, Z.: Extenstions to the k-means algorithm for clustering large data sets with categorial values. Data Mining and Knowledge Discovery 2, 283–304 (1998)

    Article  Google Scholar 

  9. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Agnostic learning vs. prior knowledge challenge. In: Proceedings of International Joint Conference on Neural Networks (August 2007)

    Google Scholar 

  10. Saffari, A., Guyon, I.: Quick start guide for CLOP (May 2006), http://ymer.org/research/files/clop/QuickStartV1.0.pdf

  11. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  12. Knopf, A.A.: Mushroom records drawn from The Audubon Society Field Guide to North American Mushrooms. G. H. Lincoff (Pres.), New York (1981)

    Google Scholar 

  13. Kohavi, R.: Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (1996)

    Google Scholar 

  14. Zwitter, M., Soklic, M.: Breast cancer data. Institute of Oncology, University Medical Center, Ljubljana, Yugoslavia (1988); Donors: Tan, M., Schlimmer, J.,

    Google Scholar 

  15. Aha, D.W.: Incremental constructive induction: An instance-based approach. In: Proceedings of the Eighth International Workshop on Machine Learning (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saeed, M. (2012). LEFT–Logical Expressions Feature Transformation: A Framework for Transformation of Symbolic Features. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds) Advances in Neural Networks – ISNN 2012. ISNN 2012. Lecture Notes in Computer Science, vol 7368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31362-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31362-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31361-5

  • Online ISBN: 978-3-642-31362-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics