Skip to main content

Finite Element Analysis of the Wrist Joint Affected by Rheumatoid Arthritis

  • Chapter
  • First Online:
Computational Biomechanics of the Wrist Joint

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

This chapter presents the information on the biomechanical analysis of the rheumatic wrist using the finite element method. This study was designed to better understand the biomechanical behaviour of the diseased wrist, thus assuring better future treatments. The three-dimensional model of the wrist affected by rheumatoid arthritis was constructed from CT images of the healthy volunteer, by considering ten characteristics involving three main symptoms and seven pathophysiology criteria of the disease. Comparison was made between the simulated healthy wrist which functions as control and the rheumatic wrist model. Both models were assigned with the same loading simulating static hand grip action. It was revealed from the finite element analyses that the RA model produced ten times higher contact pressure at the articulations in comparison with the healthy model. Additionally, normal physiological load transfer changed from primarily through the radial side to an increased load transfer of 5 % towards the ulnar. These significant findings recommend that future treatments should be able to avoid any unphysiological impacts as addressed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cush JJ, Lipsky PE (1991) Cellular basis for rheumatoid inflammation. Clin Orthop Relat Res 265:9–22

    Google Scholar 

  2. Trieb K, Hofstätter S (2009) Rheumatoid arthritis of the wrist. Tech Orthop 24(1):8–12

    Article  Google Scholar 

  3. Trieb K, Hofstätter S (2009) Treatment strategies in surgery for rheumatoid arthritis. Eur J Radiology 71(2):204–210

    Article  Google Scholar 

  4. Youm Y, Flatt AE (1980) Kinematics of the wrist. Clin Orthop Relat Res 149:21–32

    Google Scholar 

  5. Mastella DJ, Ashmead DI, Watson HK (2009) Scapholunate advanced collapse wrist arthritis. Tech Orthop 24(1):13–18

    Article  Google Scholar 

  6. Ertel AN, Millender LH, Nalebuff E, McKay D, Leslie B (1988) Flexor tendon ruptures in patients with rheumatoid arthritis. J Hand Surg 13(6):860–866

    Article  Google Scholar 

  7. Simmen BR, Kolling C, Herren DB (2007) The management of the rheumatoid wrist. Curr Orthop 21(5):344–357

    Article  Google Scholar 

  8. McKee A, Burge P (2010) The principles of surgery in the rheumatoid hand and wrist. Orthop Trauma 24(3):171–180

    Article  Google Scholar 

  9. Polikeit A, Nolte LP, Ferguson SJSJ (2004) Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J Biomech 37(7):1061–1069

    Article  Google Scholar 

  10. Andresen R, Haidekker MA, Radmer S, Banzer D (1999) CT determination of bone mineral density and structural investigations on the axial skeleton for estimating the osteoporosis-related fracture risk by means of a risk score. British J Radiol 72(858):569–578

    Google Scholar 

  11. Homminga J, Weinans H, Gowin W, Felsenberg D, Huiskes R (2001) Osteoporosis changes the amount of vertebral trabecular bone at risk of fracture but not the vertebral load distribution. Spine 26(14):1555–1561

    Article  Google Scholar 

  12. Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16

    Article  Google Scholar 

  13. Augat P, Link T, Lang TF, Lin JC, Majumdar S, Genant HK (1998) Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations. Med Eng Phys 20(2):124–131

    Article  Google Scholar 

  14. Lang T, Augat P, Majumdar S, Ouyang X, Genant HK (1998) Noninvasive assessment of bone density and structure using computed tomography and magnetic resonance. Bone 22 (5, Suppl 1):149S–153S

    Google Scholar 

  15. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168

    Article  Google Scholar 

  16. Gerard J, Tortora BD (2009) Principles of anatomy and physiology, 12th edn. Wiley, USA

    Google Scholar 

  17. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P (1999) Load transfer analysis of the distal radius from in vivo high-resolution CT-imaging. J Biomech 32(8):821–828

    Article  Google Scholar 

  18. Gislason MK, Nash DH, Nicol A, Kanellopoulos A, Bransby-Zachary M, Hems T, Condon B, Stansfield B (2009) A three-dimensional finite element model of maximal grip loading in the human wrist. Proc Inst Mech Eng Part H J Eng Med 223(7):849–861

    Article  Google Scholar 

  19. Carrigan SD, Whiteside RA, Pichora DR, Small CF (2003) Development of a three-dimensional finite element model for carpal load transmission in a static neutral posture. Ann Biomed Eng 31(6):718–725

    Article  Google Scholar 

  20. Gislason MK, Stansfield B, Nash DH (2010) Finite element model creation and stability considerations of complex biological articulation: the human wrist joint. Med Eng Phys 32(5):523–531

    Article  Google Scholar 

  21. Wright V, Dowson D (1976) Lubrication and cartilage. J Anat 121(Pt 1):107–118

    Google Scholar 

  22. Kauer JMG (1986) The mechanism of the carpal joint. Clin Orthop Relat Res 202:16–26

    Google Scholar 

  23. Viegas SF, Patterson RM, Todd PD, McCarty P (1993) Load mechanics of the midcarpal joint. J Hand Surg 18(1):14–18

    Article  Google Scholar 

  24. Alkan I, Sertgöz A, Ekici B (2004) Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent 91(4):319–325

    Article  Google Scholar 

  25. Bajuri MN, Kadir MRA, Raman MM, Kamarul T (2012) Mechanical and functional assessment of the wrist affected by rheumatoid arthritis: a finite element analysis. Med Eng Phys (in press)

    Google Scholar 

  26. Rho J-Y, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20):1325–1330

    Article  Google Scholar 

  27. Brown CP, Nguyen TC, Moody HR, Crawford RW, Oloyede A (2009) Assessment of common hyperelastic constitutive equations for describing normal and osteoarthritic articular cartilage. Proc Inst Mech Eng Part H J Eng Med 223(6):643–652

    Article  Google Scholar 

  28. Li Z, Kim J-E, Davidson JS, Etheridge BS, Alonso JE, Eberhardt AW (2007) Biomechanical response of the pubic symphysis in lateral pelvic impacts: a finite element study. J Biomech 40(12):2758–2766

    Article  Google Scholar 

  29. Patterson RM, Viegas SF, Elder K, Buford WL (1995) Quantification of anatomic, geometric, and load transfer characteristics of the wrist joint. Semin Arthroplast 6(1):13–19

    Google Scholar 

  30. Macleod NA, Nash DH, Stansfield BW, Bransby-Zachary M, Hems T (2007) Cadaveric analysis of the wrist and forearm load distribution for finite element validation. In: In sixth international hand and wrist biomechanics symposium, Tainan, Taiwan, Republic of China, 29–30 June 2007, p 11

    Google Scholar 

  31. Givissis PK, Antonarakos P, Vafiades VE, Christodoulou AG (2009) Management of posttraumatic arthritis of the wrist with radiolunate fusion enhanced with a sliding autograft: a case report and description of a novel technique. Techniques in Hand & Upper Extremity Surgery 13(2):90–93

    Article  Google Scholar 

  32. Bosisio MR, Talmant M, Skalli W, Laugier P, Mitton D (2007) Apparent Young’s modulus of human radius using inverse finite-element method. J Biomech 40(9):2022–2028

    Article  Google Scholar 

  33. Kerin AJ, Wisnom MR, Adams MA (1998) The compressive strength of articular cartilage. Proc Inst Mech Eng Part H J Eng Med 212(4):273–280

    Article  Google Scholar 

  34. McMaster PE (1937) Bone atrophy and absorption: experimental observations. J Bone Joint Sur 19(1):74–83

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Nazri Bajuri .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajuri, M.N., Abdul Kadir, M.R. (2013). Finite Element Analysis of the Wrist Joint Affected by Rheumatoid Arthritis. In: Computational Biomechanics of the Wrist Joint. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31906-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31906-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31905-1

  • Online ISBN: 978-3-642-31906-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics