Skip to main content

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 5))

  • 9132 Accesses

Abstract

Graph theory began in 1736 when Leonhard Euler solved the well-known Königsberg bridge problem. This problem asked for a circular walk through the town of Königsberg (now Kaliningrad) in such a way as to cross over each of the seven bridges spanning the river Pregel once, and only once. Euler realized that the precise shapes of the island and the other three territories involved are not important; the solvability depends only on their connection properties. This led to the abstract notion of a graph. Actually, Euler proved much more: he gave a necessary and sufficient condition for an arbitrary graph to admit such a circular walk. His theorem is one of the highlights in the introductory Chap. 1, where we deal with some of the most fundamental notions in graph theory: paths, cycles, connectedness, 1-factors, trees, Euler tours and Hamiltonian cycles, the travelling salesman problem, drawing graphs in the plane, and directed graphs. We will also see a first application, namely setting up a schedule for a tournament, say in soccer or basketball, where each of the 2n participating teams should play against each of the other teams exactly twice, once at home and once away.

It is time to get back to basics.

John Major

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [Wil86] and [BigLW76].

  2. 2.

    In graph theory, infinite graphs are studied as well. However, we restrict ourselves in this book—like [Har69]—to the finite case.

  3. 3.

    Some authors denote the structure we call a multigraph by graph; graphs according to our definition are then called simple graphs. Moreover, sometimes even edges e for which J(e) is a set {a} having only one element are admitted; such edges are then called loops. The corresponding generalization of multigraphs is often called a pseudograph.

  4. 4.

    Sometimes one also uses the term Eulerian cycle, even though an Euler tour usually contains vertices more than once.

  5. 5.

    It seems that the first known knight’s tours go back more than a thousand years to the Islamic and Indian world around 840–900. The first examples in the modern European literature occur in 1725 in Ozanam’s book [Oza25], and the first mathematical analysis of knight’s tours appears in a paper presented by Euler to the Academy of Sciences at Berlin in 1759 [Eul66]. See the excellent website by Jelliss [Jel03]; and [Wil89], an interesting account of the history of Hamiltonian graphs.

  6. 6.

    The distinction between easy and hard problems can be made quite precise; we will explain this in Chap. 2.

  7. 7.

    In the definition of planar graphs, one often allows not only line segments, but curves as well. However, this does not change the definition of planarity as given above, see [Wag36]. For multigraphs, it is necessary to allow curves.

  8. 8.

    Note that we introduce only one edge wx, even if x was adjacent to both u and v, which is the appropriate operation in our context. However, there are occasions where it is actually necessary to introduce two parallel edges wx instead, so that a contracted graph will in general become a multigraph.

  9. 9.

    This section will not be used in the remainder of the book and may be skipped during the first reading.

References

  1. Aigner, M.: Graphentheorie. Eine Entwicklung aus dem 4-Farben-Problem. Teubner, Stuttgart (1984)

    MATH  Google Scholar 

  2. Anderson, I.: Combinatorial Designs: Construction Methods. Ellis Horwood, Chichester (1990)

    MATH  Google Scholar 

  3. Anderson, I.: Combinatorial Designs and Tournaments. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  4. Ball, W.W.R., Coxeter, H.S.M.: Mathematical Recreations and Essays, 13th edn. Dover, New York (1987)

    Google Scholar 

  5. Bang-Jensen, J., Gutin, G.Z.: Digraphs, 2nd edn. Springer, London (2009)

    Book  MATH  Google Scholar 

  6. Barnes, T.M., Savage, C.D.: A recurrence for counting graphical partitions. Electron. J. Comb. 2, # R 11 (1995)

    Google Scholar 

  7. Berge, C.: Graphs and Hypergraphs. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  8. Bermond, J.C.: Hamiltonian graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory, pp. 127–167. Academic Press, New York (1978)

    Google Scholar 

  9. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, 2nd edn. vols. 1 and 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  10. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory 1736–1936. Oxford University Press, Oxford (1976)

    MATH  Google Scholar 

  11. Boesch, F., Tindell, R.: Robbins theorem for mixed multigraphs. Am. Math. Mon. 87, 716–719 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Borchardt, C.W.: Über eine der Interpolation entsprechende Darstellung der Eliminationsresultante. J. Reine Angew. Math. 57, 111–121 (1860)

    Article  MATH  Google Scholar 

  14. Cameron, P.J., van Lint, J.H.: Designs, Graphs, Codes and Their Links. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  15. Cayley, A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)

    Google Scholar 

  16. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of mixed multigraphs. Networks 15, 477–484 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chvátal, V.: Hamiltonian cycles. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.) The Travelling Salesman Problem, pp. 403–429. Wiley, New York (1985)

    Google Scholar 

  18. Chvátal, V., Thomasson, C.: Distances in orientations of graphs. J. Comb. Theory, Ser. B 24, 61–75 (1978)

    Article  Google Scholar 

  19. Conrad, A., Hindrichs, T., Morsy, H., Wegener, I.: Wie es einem Springer gelingt, Schachbretter von beliebiger Größe zwischen beliebig vorgegebenen Anfangs- und Endfeldern vollständig abzureiten. Spektrum der Wiss. 10–14 (1992)

    Google Scholar 

  20. Conrad, A., Hindrichs, T., Morsy, H., Wegener, I.: Solution of the knight’s Hamiltonian path problem on chessboards. Discrete Appl. Math. 50, 125–134 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Coxeter, H.M.S.: Regular Polytopes, 3rd edn. Dover, New York (1973)

    Google Scholar 

  22. de Werra, D.: Geography, games and graphs. Discrete Appl. Math. 2, 327–337 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Werra, D.: Scheduling in sports. Ann. Discrete Math. 11, 381–395 (1981)

    MATH  Google Scholar 

  24. de Werra, D.: Minimizing irregularities in sports schedules using graph theory. Discrete Appl. Math. 4, 217–226 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Werra, D.: Some models of graphs for scheduling sports competitions. Discrete Appl. Math. 21, 47–65 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. de Werra, D., Jacot-Descombes, L., Masson, P.: A constrained sports scheduling problem. Discrete Appl. Math. 26, 41–49 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Diestel, R.: Graph Theory, 4th edn. Springer, Berlin (2010)

    Book  Google Scholar 

  28. Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  29. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Comment. Acad. Sci. Imp. Petropol. 8, 128–140 (1736)

    Google Scholar 

  30. Euler, L.: Demonstratio nonnullorum insignium proprietatum quibus solida hadris planis inclusa sunt praedita. Novi Comment. Acad. Sci. Petropol. 4, 140–160 (1752/1753)

    Google Scholar 

  31. Euler, L.: Solution d’une question curieuse qui ne paroit soumise à aucune analyse. Mém. Acad. R. Sci. Belles Lettres, Année 1759 15, 310–337 (1766)

    Google Scholar 

  32. Fleischner, H.: Eulerian graphs. In: Beineke, L.W., Wilson, R.J. (eds.) Selected Topics in Graph Theory 2, pp. 17–53. Academic Press, New York (1983)

    Google Scholar 

  33. Fleischner, H.: Eulerian Graphs and Related Topics, Part 1, vol. 1. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  34. Fleischner, H.: Eulerian Graphs and Related Topics, Part 1, vol. 2. North Holland, Amsterdam (1991)

    MATH  Google Scholar 

  35. Gondran, M., Minoux, N.: Graphs and Algorithms. Wiley, New York (1984)

    MATH  Google Scholar 

  36. Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Wiley, New York (1983)

    MATH  Google Scholar 

  37. Griggs, T., Rosa, A.: A tour of European soccer schedules, or testing the popularity of GK 2n . Bull. Inst. Comb. Appl. 18, 65–68 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Harary, F.: Graph Theory. Addison Wesley, Reading (1969)

    Google Scholar 

  39. Harary, F., Tutte, W.T.: A dual form of Kuratowski’s theorem. Can. Math. Bull. 8, 17–20 and 173 (1965)

    Google Scholar 

  40. Jelliss, G.: Knight’s Tour Notes (2003). http://www.ktn.freeuk.com/index.htm

  41. Kirkman, T.P.: On a problem in combinatorics. Camb. Dublin Math. J. 2, 191–204 (1847)

    Google Scholar 

  42. Kuratowski, K.: Sur le problème des courbes gauches en topologie. Fundam. Math. 15, 271–283 (1930)

    MATH  Google Scholar 

  43. Lamken, E.: A note on partitioned balanced tournament designs. Ars Comb. 24, 5–16 (1987)

    MathSciNet  MATH  Google Scholar 

  44. Lamken, E., Vanstone, S.A.: The existence of partitioned balanced tournament designs. Ann. Discrete Math. 34, 339–352 (1987)

    MathSciNet  Google Scholar 

  45. Lamken, E., Vanstone, S.A.: Balanced tournament designs and related topics. Discrete Math. 77, 159–176 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  46. Las Vergnas, M.: Problèmes de couplages et problèmes hamiltoniens en théorie des graphes. Dissertation, Universitè de Paris VI (1972)

    Google Scholar 

  47. Lesniak, L., Oellermann, O.R.: An Eulerian exposition. J. Graph Theory 10, 277–297 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  48. Lüneburg, H.: Tools and Fundamental Constructions of Combinatorial Mathematics. Bibliographisches Institut, Mannheim (1989)

    MATH  Google Scholar 

  49. Mendelsohn, E., Rosa, A.: One-factorizations of the complete graph—a survey. J. Graph Theory 9, 43–65 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nishizeki, T., Chiba, N.: Planar Graphs: Theory and Algorithms. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  51. Ore, O.: Note on Hamiltonian circuits. Am. Math. Mon. 67, 55 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ozanam, J.: Récréations Mathématiques et Physiques, vol. 1. Claude Jombert, Paris (1725)

    Google Scholar 

  53. Petersen, J.: Sur le théorème de Tait. L’Intermédiaire Math. 5, 225–227 (1898)

    Google Scholar 

  54. Prisner, E.: Line graphs and generalizations—a survey. Congr. Numer. 116, 193–229 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. (3) 27, 142–144 (1918)

    MATH  Google Scholar 

  56. Rényi, A.: Some remarks on the theory of trees. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 4, 73–85 (1959)

    MATH  Google Scholar 

  57. Robbins, H.: A theorem on graphs with an application to a problem of traffic control. Am. Math. Mon. 46, 281–283 (1939)

    Article  MathSciNet  Google Scholar 

  58. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs I: Large grids. SIAM J. Discrete Math. 1, 199–222 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  59. Schreuder, J.A.M.: Constructing timetables for sport competitions. Math. Program. Stud. 13, 58–67 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  60. Schreuder, J.A.M.: Combinatorial aspects of construction of competition Dutch professional football leagues. Discrete Appl. Math. 35, 301–312 (1992)

    Article  MATH  Google Scholar 

  61. Schwenk, A.J.: Which rectangular chessboards have a knight’s tour? Math. Mag. 64, 325–332 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sierksma, G., Hoogeveen, H.: Seven criteria for integer sequences being graphic. J. Graph Theory 15, 223–231 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  63. Stanley, R.P.: Enumerative Combinatorics, vol. 1. Wadsworth & Brooks/Cole, Monterey (1986)

    MATH  Google Scholar 

  64. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  65. Takács, L.: On Cayley’s formula for counting forests. J. Comb. Theory, Ser. A 53, 321–323 (1990)

    Article  MATH  Google Scholar 

  66. Takács, L.: On the number of distinct forests. SIAM J. Discrete Math. 3, 574–581 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  67. Thomassen, C.: Kuratowski’s theorem. J. Graph Theory 5, 225–241 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  68. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. DMV 46, 26–32 (1936)

    Google Scholar 

  69. Wagner, K.: Über eine Eigenschaft der ebenen Komplexe. Math. Ann. 114, 170–190 (1937)

    Article  Google Scholar 

  70. Wallis, W.D.: One-factorizations of the complete graph. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 593–639. Wiley, New York (1992)

    Google Scholar 

  71. Wilson, R.J.: An Eulerian trail through Königsberg. J. Graph Theory 10, 265–275 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  72. Wilson, R.J.: A brief history of Hamiltonian graphs. Ann. Discrete Math. 41, 487–496 (1989)

    Article  Google Scholar 

  73. Yap, H.P.: Some Topics in Graph Theory. Cambridge University Press, Cambridge (1986)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungnickel, D. (2013). Basic Graph Theory. In: Graphs, Networks and Algorithms. Algorithms and Computation in Mathematics, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32278-5_1

Download citation

Publish with us

Policies and ethics