Skip to main content

Physical Control Over Endocytosis

  • Chapter
  • First Online:
Endocytosis in Plants

Abstract

Plant endocytosis emerges as an active field of contemporary plant sciences. In this chapter, control of plant endocytosis via physical forces is discussed from the perspective of structural homeostasis of the plasma membrane (PM) regulated via vesicular trafficking. Plant cells are very active in endocytosis despite high turgor pressure. Similar to neurons, plant cells are also using endocytosis and endosomes for sensing and processing of sensory information and perhaps also for rapid cell-to-cell communication of this information. As the freshly internalized endosomes are surrounded by their limiting membrane derived from the PM, these endosomes effectively amplify structural and electrical boundaries between the cellular interior and exterior. This feature is critical for the primary processing of sensory information at the PM and its further transduction into signal transduction networks permeating the eukaryotic cell. The higher the number of endosomes a cell generates and recycles, the more it is informed about its environment. Endocytosis is sensitive to diverse physical factors including mechanical, thermal, and electro-magnetic aspects of the PM. Last but not the least, blue light emerges as a physical ligand-like factor for the unique light-induced plant endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adair RK (1999) Effects of very weak magnetic fields on radical pair reformation. Bioelectromagnetics 20:255–263

    PubMed  CAS  Google Scholar 

  • Agnati LF, Baluska F, Barlow PW, Guidolin D (2009) Mosaic, self-similarity logic, and biological attraction principles: three explanatory instruments in biology. Commun Integr Biol 2:552–563

    PubMed  Google Scholar 

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624

    Google Scholar 

  • Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1:26

    PubMed  CAS  Google Scholar 

  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation–contraction coupling in muscle fibers lacking myotubularin lipid phosphatase.Proc Natl Acad Sci U S A 106:18763–18768

    Google Scholar 

  • An Q, Hückelhoven R, Kogel KH, van Bel AJ (2006) Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019

    PubMed  CAS  Google Scholar 

  • An Q, van Bel AJ, Hückelhoven R (2007) Do plant cells secrete exosomes derived from multivesicular bodies? Plant Signal Behav 2:4–7

    PubMed  Google Scholar 

  • Anastassiou CA, Montgomery SM, Barahona M, Buzsáki G, Koch C (2010) The effect of spatially inhomogeneous extracellular electric fields on neurons. J Neurosci 30:1925–1936

    PubMed  CAS  Google Scholar 

  • Anbazhagan V, Munz C, Tome L, Schneider D (2010) Fluidizing the membrane by a local anesthetic: phenylethanol affects membrane protein oligomerization. J Mol Biol 404:773–777

    PubMed  CAS  Google Scholar 

  • Andersen SSL, Jackson AD, Heimburg T (2009) Towards a thermodynamic theory of nerve pulse propagation. Prog Neurobiol 88:104–113

    PubMed  Google Scholar 

  • Andrews NW (2005) Membrane resealing: synaptotagmin VII keeps running the show. Sci STKE 282:pe19

    Google Scholar 

  • Andrews NW, Chakrabarti S (2005) There’s more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol 15:626–631

    PubMed  CAS  Google Scholar 

  • Andrzejak M, Santiago M, Kessel D (2011) Effects of endosomal photodamage on membrane recycling and endocytosis. Photochem Photobiol 87:699–706

    PubMed  CAS  Google Scholar 

  • Antov Y, Barbul A, Korenstein R (2004) Electroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp Cell Res 297:348–362

    PubMed  CAS  Google Scholar 

  • Antov Y, Barbul A, Mantsur H, Korenstein R (2005) Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 88:2206–2223

    PubMed  CAS  Google Scholar 

  • Araujo-Bazán L, Peñalva MA, Espeso EA (2008) Preferential localization of the endocytic internalization machinery to hyphal tips underlies polarization of the actin cytoskeleton in Aspergillus nidulans. Mol Microbiol 67:891–905

    PubMed  Google Scholar 

  • Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23:452–457

    PubMed  CAS  Google Scholar 

  • Baluška F (2009) Cell-cell channels, viruses, and evolution: via infection, parasitism and symbiosis towards higher levels of biological complexity. Ann N Y Acad Sci 1178:106–119

    PubMed  Google Scholar 

  • Baluška F (2011) Evolution in revolution. Paradigm shift in our understanding of life and biological evolution. Commun Integr Biol 4:521–523

    Google Scholar 

  • Baluška F, Hlavačka A (2005) Plant formins come to age: something special about cross-walls. New Phytol 168:499–503

    PubMed  Google Scholar 

  • Baluška F, Volkmann D (2011) Mechanical aspects of gravity-controlled growth, development and morphogenesis. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Springer, Berlin, pp 195–222

    Google Scholar 

  • Baluška F, Hlavačka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D (2002) F-actin-dependent endocytosis of cell wall pectins in meristematic root cells: insights from brefeldin A-induced compartments. Plant Physiol 130:422–431

    PubMed  Google Scholar 

  • Baluška F, Šamaj J, Menzel D (2003) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285

    PubMed  Google Scholar 

  • Baluška F, Šamaj J, Hlavačka A, Kendrick-Jones J, Volkmann D (2004a) Myosin VIII and F-actin enriched plasmodesmata in maize root inner cortex cells accomplish fluid-phase endocytosis via an actomyosin-dependent process. J Exp Bot 55:463–473

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004b) Cell bodies in a cage. Nature 428:371

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2004c) Eukaryotic cells and their cell bodies: cell theory revisited. Ann Bot 94:9–32

    PubMed  Google Scholar 

  • Baluška F, Liners F, Hlavačka A, Schlicht M, Van Cutsem P, McCurdy D, Menzel D (2005a) Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 225:141–155

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Menzel D (2005b) Plant synapses: actin-based adhesion domains for cell-to-cell communication. Trends Plant Sci 10:106–111

    PubMed  Google Scholar 

  • Baluška F, Baroja-Fernandez E, Pozueta-RomeroJ, Hlavacka A, Etxeberria E, Šamaj J (2006) Endocytic uptake of nutrients, cell wall molecules, and fluidized cell wall portions into heterotrophic plant cells. In: Šamaj J, Baluška F, Menzel D (eds) Plant endocytosis. Springer, Berlin, pp 19–35

    Google Scholar 

  • Baluška F, Schlicht M, Wan Y-L, Burbach C, Volkmann D (2009) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopolda 96:103–122

    Google Scholar 

  • Baluška F, Mancuso S, Volkmann D, Barlow PW (2010) Root apex transition zone: a signalling-response nexus in the root. Trends Plant Sci 15:402–408

    PubMed  Google Scholar 

  • Baluška F, Volkmann D, Menzel D, Barlow PW (2012) Strasburger’s legacy to mitosis and cytokinesis and its relevance for the cell theory. Protoplasma 249 (in press)

    Google Scholar 

  • Barlow PW, Volkmann D, Baluška F (2004) Polarity in roots. In: K Lindsey (ed) Polarity in plants. Blackwell Publishing, Oxford, pp 192–241

    Google Scholar 

  • Barton R (1965) An unusual organelle in the peripheral cytoplasm of Chara cells. Nature 205:201

    Google Scholar 

  • Batchelder EL, Hollopeter G, Campillo C, Mezanges X, Jorgensen EM, Nassoy P, Sens P, Plastino J (2011) Membrane tension regulates motility by controlling lamellipodium organization. Proc Natl Acad Sci U S A 108:11429–11431

    PubMed  CAS  Google Scholar 

  • Battail G (2009) Living versus inanimate: the information border. Biosemiotics 2:321–341

    Google Scholar 

  • Battail G (2011) An answer to Schrödinger’s what is life? Biosemiotics 4:55–67

    Google Scholar 

  • Becker RO, Selden G (1985) The body electric. Electromagnetism and the foundation of life. Morrow, New York

    Google Scholar 

  • Bedlack RS, Md Wei, Loew LM (1992) Localized membrane depolarizations, and localized calcium influx during electric field-guided neuritegrowth. Neuron 9:393–403

    PubMed  CAS  Google Scholar 

  • Ben-Chaim Y, Tour O, Dascal N, Parnas I, Parnas H (2003) The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J Biol Chem 278:22482–22491

    PubMed  CAS  Google Scholar 

  • Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H (2006) Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106–109

    PubMed  CAS  Google Scholar 

  • Berghoefer T, Eing C, Flickinger B, Hohenberger P, Wegner LH, Frey W, Nick P (2009) Nanosecond electric pulses trigger actin responses in plant cells. Biochem Biophys Res Commun 387:590–595

    CAS  Google Scholar 

  • Berghoefer T, Flickinger B, Frey W (2012) Aspects of plant plasmalemma charging induced by external electric field pulses. Plant Signal Behav 7:322–324

    PubMed  Google Scholar 

  • Bezanilla F (2006) The action potential: from voltage-gated conductances to molecular structures. Biol Res 39:425–435

    PubMed  CAS  Google Scholar 

  • Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323–332

    PubMed  CAS  Google Scholar 

  • Bou Daher F, Geitmann A (2011) Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles. Traffic 12:1537–1551

    PubMed  Google Scholar 

  • Brenner S (2012) Turing centenary: Life’s code script. Nature 482:461

    PubMed  CAS  Google Scholar 

  • Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, Beggs AH, Schultz P, Montus M, Denèfle P, Mandel JL (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143

    PubMed  CAS  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    PubMed  Google Scholar 

  • Campanoni P, Blatt MR (2007) Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58:65–74

    PubMed  CAS  Google Scholar 

  • Chen X, Zhang X, Jia C, Xu J, Gao H, Zhang G, Du X, Zhang H (2011) Membrane depolarization increases membrane PtdIns(4,5)P2 levels through mechanisms involving PKC βII and PI4 kinase. J Biol Chem 286:39760–39767

    PubMed  CAS  Google Scholar 

  • Christie JM, Yang H, Richter GL et al (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9:1001076

    Google Scholar 

  • Coetzee J, Fineran BA (1987) The apoplastic continuum, nutrient absorption and plasmatubules in the dwarf mistletoe Korthalsella lindsaj (Viscaceae). Protoplasma 136:145–153

    Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-inducing bending response in roots of Zea mays L. Plant Physiol 100:1417–1426

    PubMed  CAS  Google Scholar 

  • Dai J, Sheetz MP (1995) Regulation of endocytosis, exocytosis, and shape by membrane tension. Cold Spring Harb Symp Quant Biol 60:567–571

    PubMed  CAS  Google Scholar 

  • Dai J, Sheetz MP, Wan X, Morris CE (1998) Membrane tension in swelling and shrinking molluscan neurons. J Neurosci 18:6681–6692

    PubMed  CAS  Google Scholar 

  • Dhonukshe P, Baluška F, Schlicht M, Hlavačka A, Šamaj J, Friml J, Gadella Jr TWJ (2006) Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10:137–150

    PubMed  CAS  Google Scholar 

  • Ding ZJ, Galván-Ampudia CS, Dermarsy E et al (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. NatCell Biol 13:447–452

    CAS  Google Scholar 

  • Ding Y, Ndamukong I, Zhao Y, Xia Y, Riethoven JJ, Jones DR, Divecha N, Avramova Z (2012) Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana: evolution of the plant MTM family. Plant J 70:866–878

    Google Scholar 

  • Dixit R, Cyr R (2003) Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J 36:280–290

    PubMed  CAS  Google Scholar 

  • Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    PubMed  Google Scholar 

  • Dowling JJ, Low SE, Busta AS, Feldman EL (2010) Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 19:2668–2681

    PubMed  CAS  Google Scholar 

  • de Figueiredo RCBQ, Soares MJ (2000) Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes. Parasitol Res 86:413–418

    PubMed  Google Scholar 

  • Foster KR (2003) Mechanisms of interaction of extremely low frequency electric fields and biological systems. Radiat Prot Dosimetry 106:301–310

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Lucas WJ (1981) The charasome periplasmic space. Protoplasrna 107:269–284

    Google Scholar 

  • Fromm J, Lautner S (2007) Electrical signals and their physiological significance in plants. Plant Cell Environm 30:249–257

    CAS  Google Scholar 

  • Fu D, Vissavajjhala P, Hemmings HC Jr (2005) Volatile anaesthetic effects on phospholipid binding to synaptotagmin 1, a presynaptic Ca2+ sensor. Br J Anaesth 95:216–221

    PubMed  CAS  Google Scholar 

  • Galland P, Pazur A (2005) Magnetoreception in plants. J Plant Res 118:371–389

    PubMed  Google Scholar 

  • Gao R-C, Zhang X-D, Sun Y-H, Kamimura Y, Mogilner A, Devreotes PN, Zhao M (2011) Different roles of membrane potentials in electrotaxis and chemotaxis of Dictyostelim cells. Eukaryot Cell 10:1251–1256

    PubMed  CAS  Google Scholar 

  • Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP (2011) Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. Proc Natl Acad Sci U S A 108:14467–14472

    PubMed  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    PubMed  CAS  Google Scholar 

  • Geldner N, Hyman DL, Wang X, Schumacher K, Chory J (2007) Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev 21:1598–1602

    PubMed  CAS  Google Scholar 

  • Gibbs EM, Feldman EL, Dowling JJ (2010) The role of MTMR14 in autophagy and in muscle disease. Autophagy 6:819–820

    PubMed  Google Scholar 

  • Giocondi M-C, Mamdouh Z, Le Grimellec C (1995) Benzyl alcohol differently affects fluid phase endocytosis and exocytosis in renal epithelial cells. Biochim Biophys Acta 1234:197–202

    PubMed  Google Scholar 

  • Glogauer M, Lee W, McCulloch CA (1993) Induced endocytosis in human fibroblasts by electrical fields. Exp Cell Res 208:232–240

    PubMed  CAS  Google Scholar 

  • Goldsworthy A (1983) The evolution of plant action potentials. J Theor Biol 103:645–648

    Google Scholar 

  • Goldsworthy A (2006) Effects of electrical and electromagnetic fields on plants and related topics. In: Volkov A (ed) Plant electrophysiology. Springer, Berlin, pp 247–267

    Google Scholar 

  • Goldsworthy A, Rathore KS (1985) The electrical control of growth in plant tissue cultures: the polar transport of auxin. J Exp Bot 36:1134–1141

    CAS  Google Scholar 

  • Gomez LD, Steele-King CG, Jones L, Foster JM, Vuttipongchaikij S, McQueen-Mason SJ (2009) Arabinan metabolism during seed development and germination in Arabidopsis. Mol Plant 2:966–976

    PubMed  CAS  Google Scholar 

  • Gow NAR (1989) Relationship between growth and the electrical current of fungal hyphae. Bio Bul 176:31–35

    Google Scholar 

  • Grossmann G, Opekarová M, Malinsky J, Weig-Meckl I, Tanner W (2007) Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 26:1–8

    PubMed  CAS  Google Scholar 

  • Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4

    PubMed  CAS  Google Scholar 

  • Han IS, Tseng TS, Eisinger W, Briggs WR (2008) Phytochrome A regulates the intracellular distribution of Phototropin 1–green fluorescent protein in Arabidopsis thaliana. Plant Cell 20:2835–2847

    PubMed  CAS  Google Scholar 

  • Harris N, Chaffey NJ (1986) Plasmatubules—real modifications of the plasmalemma. Nord J Bot 6:599–607

    Google Scholar 

  • Harris N, Oparka KJ, Walker-Smith DJ (1982) Plasmatubules: an alternative to transfer cells? Planta 156:461–465

    Google Scholar 

  • Haupt S, Cowan GH, Ziegler A, Roberts AG, Oparka KJ, Torrance L (2005) Two plant-viral movement proteins traffic in the endocytic recycling pathway. Plant Cell 17:164–181

    PubMed  CAS  Google Scholar 

  • Heimburg T (2009) The physics of nerves. arXiv:1008.4279v1

    Google Scholar 

  • Heimburg T, Jackson AD (2007) The thermodynamics of general anesthesia. Biophys J 92:3159–3165

    PubMed  CAS  Google Scholar 

  • Herring TL, Cohan CS, Welnhofer EA, Mills LR, Morris CE (1999) F-actin at newly invaginated membrane in neurons: implications for surface area regulation. J Membr Biol 171:151–169

    PubMed  CAS  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Google Scholar 

  • Hoebe RA, Van Oven CH, Gadella TW Jr, Dhonukshe PB, Van Noorden CJ, Manders EM (2007) Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging. Nat Biotechnol 25:249–253

    PubMed  CAS  Google Scholar 

  • Hohenberger P, Eing C, Straessner R, Durst S, Frey W, Nick P (2011) Plant actin controls membrane permeability. Biochim Biophys Acta 1808:2304–2312

    PubMed  CAS  Google Scholar 

  • Homann U (1998) Fusion and fission of plasma-membrane material accommodates for osmotically induced changes in the surface area, of guard-cell protoplasts. Planta 206:329–333

    CAS  Google Scholar 

  • Humphrey JA, Sedensky MM, Morgan PG (2002) Understanding anesthesia: making genetic sense of the absence of senses. Hum Mol Genet 11:1241–1249

    PubMed  CAS  Google Scholar 

  • Hush JM, Overall RL (1989) Steady ionic currents around pea (Pisum sativum L.) root tips: the effect of tissue wounding. Biol Bull 175:56–64

    Google Scholar 

  • Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, Rivoltini L (2008) Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ 15:80–88

    PubMed  CAS  Google Scholar 

  • Illéš P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovečka M (2006) Aluminium toxicity in plants: internalisation of aluminium into cells of the transition zone in ARABIDOPSIS root apices relates to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Bot 57:4201–4213

    PubMed  Google Scholar 

  • Ishikawa H, Evans ML (1990) Gravity-induced changes in, intracellular potentials in elongating cortical cells of mungbean roots. Plant Cell Physiol 31:457–462

    PubMed  CAS  Google Scholar 

  • Iwabuchi A, Yano M, Shimuzu H (1989) Development of, extracellular electric pattern around Lepidium roots: its possible, role in root growth and gravitropism. Protoplasma 148:94–100

    Google Scholar 

  • Iwasa K, Tasaki I, Gibbons RC (1980) Swelling of nerve fibers associated with action potentials. Science 210:338–339

    PubMed  CAS  Google Scholar 

  • Jaffe LF (1977) Electrophoresis along cell membranes. Nature 265:600–602

    PubMed  CAS  Google Scholar 

  • Jaffe LF (1981) The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond B Biol Sci 295:553–566

    PubMed  CAS  Google Scholar 

  • Jaffe LF, Nuccitelli R (1977) Electrical controls of development. Annu Rev Biophys Bioeng 6:445–476

    PubMed  CAS  Google Scholar 

  • Johnsen S, Lohmann KJ (2005) Physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712

    PubMed  CAS  Google Scholar 

  • Johnson FH, Flagler EA (1951) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92

    Google Scholar 

  • Jones L, Milne JL, Ashford D, McQueen-Mason SJ (2003) Cell wall arabinan is essential for guard cell function. Proc Natl Acad Sci U S A 100:11783–11788

    Google Scholar 

  • Kaech S, Brinkhaus H, Matus A (1999) Volatile anesthetics block actin-based motility in dendritic spines. Proc Natl Acad Sci U S A 96:10433–10437

    PubMed  CAS  Google Scholar 

  • Kaiserli E, Sullivan S, Jones MA, Feeney KA, Christie JM (2009) Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell 21:3226–3244

    PubMed  CAS  Google Scholar 

  • Kalmijn AJ, Gonzalez IF, McClune MC (2002) The physical nature of life. J Physiol (Paris) 96:355–362

    Google Scholar 

  • Kandasamy MK, Kappler R, Kristen U (1988) Plasmatubules in the pollen tubes of Nicotiana sylvestris. Planta 173:35–41

    Google Scholar 

  • Karcz W, Burdach Z (1995) The effects of electric field on the growth of intact seedlingsand coleoptile segments of Zea mays L. Biol Plant 37:391–397

    Google Scholar 

  • Keren K (2011) Membrane tension leads the way. Proc Natl Acad Sci U S A 108:14379–14380

    PubMed  CAS  Google Scholar 

  • Kessel D (2011) Inhibition of endocytic processes by photodynamic therapy. Lasers Surg Med 43:542–547

    PubMed  Google Scholar 

  • Kessel D, Price M, Caruso J, Reiners J Jr (2011) Effects of photodynamic therapy on the endocytic pathway. Photochem Photobiol Sci 10:491–498

    PubMed  CAS  Google Scholar 

  • King JS, Veltmann DW, Insall RH (2011) The induction of autophagy by mechanical stress. Autophagy 7:1490–1499

    PubMed  CAS  Google Scholar 

  • Koizumi K, Wu S, MacRae-Crerar A, Gallagher KL (2011) An essential protein that interacts with endosomes and promotes movement of the SHORT-ROOT transcription factor. Curr Biol 21:1559–1564

    PubMed  CAS  Google Scholar 

  • Koles K, Nunnari J, Korkut C, Barria R, Brewer C, Li Y, Leszyk J, Zhang B, Budnik V (2012) Mechanism of evenness interrupted (evi)-exosome release at synaptic boutons. J Biol Chem 287:16820–16834

    PubMed  CAS  Google Scholar 

  • Kong SG, Suzuki T, Tamura K, Mochizuki N, Hara-Nishimura I, Nagatani A (2006) Blue light-induced association of phototropin 2 with the Golgi apparatus. Plant J 45:994–1005

    PubMed  CAS  Google Scholar 

  • Kováč L (2007) Information and knowledge in biology. Time for reappraisal. Plant Signal Behav 2:65–73

    PubMed  Google Scholar 

  • Kováč L (2008) Bioenergetics. A key to brain and mind. Commun Integr Biol 1:114–122

    PubMed  Google Scholar 

  • Kubitscheck U, Homann U, Thiel G (2000) Osmotically evoked shrinking of guard-cell protoplasts causes vesicular retrieval of plasma membrane into the cytoplasm. Planta 210:423–431

    PubMed  CAS  Google Scholar 

  • Kupchik YM, Barchad-Avitzur O, Wess J, Ben-Chaim Y, Parnas I, Parnas H (2011) A novel fast mechanism for GPCR-mediated signal transduction–control of neurotransmitter release. J Cell Biol 192:137–151

    PubMed  CAS  Google Scholar 

  • Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R (2011) Release, of exosomes from differentiated neurons and its regulation by synaptic, glutamatergic activity. Mol Cell Neurosci 46:409–418

    PubMed  CAS  Google Scholar 

  • Langhorst MF, Reuter A, Jaeger FA, Wippich FM, Luxenhofer G, Plattner H, Stuermer CAO (2008) Trafficking of the microdomain scaffolding protein reggie-1/flotillin-2. Eur J Cell Biol 87:211–226

    PubMed  CAS  Google Scholar 

  • Laroche C, Beney L, Marechal PA, Gervais P (2001) The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl Microbiol Biotechnol 56:249–254

    PubMed  CAS  Google Scholar 

  • Larsen M, Langmoen IA (1998) The effect of volatile anaesthetics on synaptic release and uptake of glutamate. Toxicol Lett 100–101:59–64

    PubMed  Google Scholar 

  • Lee RE Jr, Damodaran K, Yi S-X, Lorigan GA (2006) Rapid cold-hardening increases membrane fluidity and cold, tolerance of insect cells. Cryobiology 52:459–463

    PubMed  CAS  Google Scholar 

  • Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J (2011) Microvesicles as mediators of intercellular communication in cancer–the emerging science of cellular ‘debris’. Semin Immunopathol 33:455–467

    PubMed  Google Scholar 

  • Leidy C, Gousset K, Ricker J, Wolkers WF, Tsvetkova NM, Tablin F, Crowe JH (2004) Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochem Biophys 40:123–148

    PubMed  CAS  Google Scholar 

  • Leslie SB, Teter SA, Crowe LM, Crowe JH (1994) Trehalose lowersmembrane phase transition in dry yeast cells. Biochim Biophys Acta 1192:7–13

    PubMed  CAS  Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins inintact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    PubMed  CAS  Google Scholar 

  • Lever MJ, Miller KW, Paton WDM, Smith EB (1971) Pressure reversal of anaesthesia. Nature 231:368–371

    PubMed  CAS  Google Scholar 

  • Lever MC, Robertson BEM, Buchan ADB, Miller PFP, Gooday GW, Gow NAR (1994) pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol Res 98:301–306

    Google Scholar 

  • Lewis JD, Lazarowitz SG (2010) Arabidopsis synaptotagmin SYTA regulates endocytosis and virus movement protein cell-to-cell transport. Proc Natl Acad Sci U S A 107:2491–2496

    PubMed  CAS  Google Scholar 

  • Li B, Liu G, Deng Y, Xie M, Feng Z, Sun M, Zhao Y, Liang L, Ding N, Jia W (2010) Excretion and folding of plasmalemma function to accommodate alterations in guard cell volume during stomatal closure in Vicia faba L. J Exp Bot 61:3749–3758

    PubMed  CAS  Google Scholar 

  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J (2012) A membrane microdomain-associated protein, Arabidopsis flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24:2105-2122

    PubMed  CAS  Google Scholar 

  • Lin R, Chang DC, Lee YK (2011) Single-cell electroendocytosis on a micro chip using in situ fluorescence microscopy. Biomed Microdevices 13:1063–1073

    PubMed  Google Scholar 

  • Lohmann KJ (2010) Magnetic-field perception. Nature 464(1140):1142

    Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and the perception of environmental signals. Biochem Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Lucas WJ, Franceschi VR (1981) Characean charasome-complex and plasmalemma vesicle development. Protoplasma 107:255–267

    Google Scholar 

  • Lund EJ (1923) Electric control of organic polarity in the egg of Fucus. Bot Gaz 76:288–301

    Google Scholar 

  • Lycett G (2008) The role of Rab GTPases in cell wall metabolism. J Exp Bot 59:4061–4074

    PubMed  CAS  Google Scholar 

  • Mamdouh Z, Giocondi M-C, Laprade R, Le Grimellec C (1996) Temperature dependence of endocytosis in renal epithelial cells in culture. Biochim Biophys Acta 1282:171–173

    PubMed  Google Scholar 

  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluška F, Arecchi FT, Mancuso S (2009) Spatio-temporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci U S A 106:4048–4053

    PubMed  CAS  Google Scholar 

  • Malho R, Feijo JA, Pais MS (1992) Effect of electric fields and external ionic currents on pollen tube orientation. Sex Plant Reprod 5:57–63

    Google Scholar 

  • Mancuso S, Marras AM, Mugnai S, Schlicht M, Zarsky V, Li G, Song L, Hue HW, Baluška F (2007) Phospholipase Dζ2 drives vesicular secretion of auxin for its polar cell–cell transport in the transition zone of the root apex. Plant Signal Behav 2:240–244

    PubMed  Google Scholar 

  • McAulay AL, Scott BI (1954) A new approach to the study of electric fields produced by growing roots. Nature 174:924–925

    PubMed  CAS  Google Scholar 

  • McCaig CD, Rajnicek AM, Song B, Zhao M (2005) Controlling cell behavior electrically: current views and future potential. Physiol Rev 85:943–978

    PubMed  Google Scholar 

  • McCaig CD, Song B, Rajnicek AM (2009) Electrical dimensions in cell science. J Cell Sci 122:4267–4276

    PubMed  CAS  Google Scholar 

  • McGillivray AM, Gow NAR (1986) Applied electrical fields polarize thegrowth of mycelial fungi. J Gen Microbiol 132:2515–2525

    Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2005) Guard cells undergo constitutive and pressure-driven membrane turnover. Protoplasma 226:23–29

    PubMed  CAS  Google Scholar 

  • Medvedev SS, Markova IV (1990) How can the electrical polarity of axial organs regulate plant growth and IAA transport? Physiol Plant 78:38–42

    CAS  Google Scholar 

  • Messerli MA, Graham DM (2011) Extracellular electrical fields direct wound healing and regeneration. Biol Bull 221:79–92

    PubMed  CAS  Google Scholar 

  • Meyer AJ, Weisenseel MH (1997) Wound-induced changes of membrane voltage, endogenous currents, and ion fluxes in primary roots of maize. Plant Physiol 114:989–998

    PubMed  CAS  Google Scholar 

  • Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria. Progr Lipid Res 42:527–543

    CAS  Google Scholar 

  • Miller AL, Gow NA (1989) Correlation between root-generated ionic currents, pH, fusicoccin, indoleacetic acid, and growth of the primary root of Zea mays. Plant Physiol 89:1198–1206

    PubMed  CAS  Google Scholar 

  • Milne A, Beamish T (1999) Inhalational and local anesthetics reduce tactile and thermal responses in Mimosa pudica. Can J Anesth 46:287–289

    PubMed  CAS  Google Scholar 

  • Mills LR, Morris CE (1998) Neuronal plasma membrane dynamics evoked by osmomechanical perturbations. J Membr Biol 166:223–235

    PubMed  CAS  Google Scholar 

  • Mina MG, Goldsworthy A (1991) Changes in the electrical polarity of tobacco following the application of weak external currents. Planta 186:104–108

    Google Scholar 

  • Moore A (2012) Life defined. BioEssays 34:253–254

    PubMed  Google Scholar 

  • Morgan PG, Sedensky M, Meneely PM (1990) Multiple sites of action of volatile anesthetics in Caenorhabditis elegans. Proc Natl Acad Sci U S A 87:2965–2969

    PubMed  CAS  Google Scholar 

  • Morris CE (2001) Mechanosensitive membrane traffic and an optimal strategy for volume and surface area regulation in CNS neurons. Amer Zool 41:721–727

    Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179:79–102

    PubMed  CAS  Google Scholar 

  • Morrow IC, Parton RG (2005) Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 6:725–740

    PubMed  CAS  Google Scholar 

  • Moscatelli A, Idilli AI (2009) Pollen tube growth: a delicate equilibrium between secretory and endocytic pathways. J Integr Plant Biol 51:727–739

    PubMed  CAS  Google Scholar 

  • Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y (2005) Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435:1239–1243

    PubMed  CAS  Google Scholar 

  • Murr LE (1963) Plant growth responses in a stimulated electric field environment. Nature 200:490–491

    Google Scholar 

  • Müller P, Ahmad M (2011) Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception. J Biol Chem 286:21033–21040

    PubMed  Google Scholar 

  • Nichol JA, Hutter OF (1996) Tensile strength and dilatational elasticity, of giant sarcolemmal vesicles shed from rabbit muscle. J Physiol (Lond) 493:187–198

    CAS  Google Scholar 

  • Nozue K, Wada M (1993) Electrotropism of Nicotiana pollen tubes. Plant Cell Physiol 34:1291–1296

    Google Scholar 

  • Nunn JF, Sturrock JE, Wills EJ, Richmond JE, McPherson CK (1974) The effect of inhalational anaesthetics on the swimming velocity of Tetrahymena pyriformis. J Cell Sci 15:537–554

    PubMed  CAS  Google Scholar 

  • Okamura Y (2007) Biodiversity of voltage sensor domain proteins. Pflugers Arch—Eur J Physiol 454:361–371

    CAS  Google Scholar 

  • Okamura Y, Dixon JE (2011) Voltage-sensing phosphatase: its molecular relationship with PTEN. Physiology 26:6–13

    PubMed  CAS  Google Scholar 

  • Okamura Y, Murata Y, Iwasaki H (2009) Voltage-sensing phosphatase: actions and potentials. J Physiol 587:513–520

    PubMed  CAS  Google Scholar 

  • Olivotto M, Arcangeli A, Carlà M, Wanke E (1996) Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. BioEssays 18:495–504

    PubMed  CAS  Google Scholar 

  • Onelli E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–3068

    PubMed  CAS  Google Scholar 

  • Oparka KJ, Prior DAM (1992) Direct evidence for pressure-generated closure of plasmodesmata. Plant J 2:741–750

    Google Scholar 

  • Orvar BL, Sangwan V, Omann F, Dhindsa RS (2000) Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785–794

    PubMed  CAS  Google Scholar 

  • Ovečka M, Lang I, Baluška F, Ismail A, Illeš P, Lichtscheidl IK (2005) Endocytosis and vesicle trafficking during tip growth of root hairs. Protoplasma 226:39–54

    PubMed  Google Scholar 

  • Ozansoy M, Denizhan Y (2009) The endomembrane system: a representation of the extracellular medium? Biosemiotics 2:255–267

    Google Scholar 

  • Ozen S, Sirota A, Belluscio MA, Anastassiou CA, Stark E, Koch C, Buzsáki G (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30:11476–11485

    PubMed  CAS  Google Scholar 

  • Paciorek T, Zažímalová E, Ruthardt N, Petrášek J, Stierhof YD, Kleine-Vehn J, Morris DA, Emans N, Jürgens G, Geldner N, Friml J (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    PubMed  CAS  Google Scholar 

  • Pagnussat L, Burbach C, Baluška F, de la Canal (2012) Rapid endocytosis is triggered upon imbibition in Arabidopsis seeds. Plant Signal Behav 7:417–422

    Google Scholar 

  • Parnas I, Parnas H (2010) Control of neurotransmitter release: from Ca2+ to voltage dependent G-protein coupled receptors. Pflugers Arch 460:975–990

    PubMed  CAS  Google Scholar 

  • Parnas I, Parnas H (2007) The chemical synapse goes electric: Ca2+- and voltage-sensitive GPCRs control neurotransmitter release. Trends Neurosci 30:54–61

    PubMed  CAS  Google Scholar 

  • Pedersen CNS, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Frontiers Plant Sci 3:31

    CAS  Google Scholar 

  • Penzlin H (2009) The riddle of “life,” a biologist’s critical view. Naturwissenschaften 96:1–23

    PubMed  CAS  Google Scholar 

  • Pfeffer SR (2010) Unconventional secretion by autophagosome exocytosis. J Cell Biol 188:451–452

    PubMed  CAS  Google Scholar 

  • Phillips JB, Jorge PE, Muheim R (2010) Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecular mechanisms. J R Soc Interface 7(Suppl)2:S241–S256

    Google Scholar 

  • Pokorny J, Hasek J, Jelinek F (2005) Endogenous electric field and organization of living matter. Electromagn Biol Med 24:185–197

    Google Scholar 

  • Polo S, Di Fiore PP (2006) Endocytosis conducts the cell signaling orchestra. Cell 124:897–900

    PubMed  CAS  Google Scholar 

  • Price GD, Whitecross MI (1983) Cytochemical localisation of ATPase activity on the plasmalemma of Chara corallina. Protoplasma 116:65–74

    CAS  Google Scholar 

  • Punnonen E-L, Kirsi R, Marjommaki VS (1998) At reduced temperature, endocytic membrane is blocked in multivesicular carrier endosomes of cardiac myocytes. Eur J Cell Biol 49:281–294

    Google Scholar 

  • Rak J, Guha A (2012) Extracellular vesicles—vehicles that spread cancer genes. BioEssays 34:489–497

    PubMed  CAS  Google Scholar 

  • Reuzeau C, Mills LR, Harris JA, Morris CE (1995) Discrete and reversible vacuole-like dilations induced by osmomechanical perturbation of neurons. J Membr Biol 145:33–47

    PubMed  CAS  Google Scholar 

  • Roberts D, PedmaleUV MorrowJ et al (2011) Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3NPH3. Plant Cell 23:3627–3640

    PubMed  CAS  Google Scholar 

  • Rosemberg Y, Korenstein R (1997) Incorporation of macromolecules into cells and vesicles by low electirc field: induction of endocytotic-like processes. Biolelectrochem Bionenerg 42:275–281

    CAS  Google Scholar 

  • Sakamoto K, Briggs WR (2002) Cellular and subcellular localization of phototropin 1. Plant Cell 14:1723–1735

    PubMed  CAS  Google Scholar 

  • Sakata S, Hossain MI, Okamura Y (2011) Coupling of the phosphatase activity of Ci-VSP to itsvoltage sensor activity over the entire range of voltage sensitivity. J Physiol 589:2687–2705

    PubMed  CAS  Google Scholar 

  • Saltveit ME Jr (1993) Effect of high-pressure gas atmospheres and anaesthetics on chilling injury of plants. J Exp Bot 265:1361–1368

    Google Scholar 

  • Šamaj J, Šamajová O, Peters M, Baluška F, Lichtscheidl I, Knox JP, Volkmann D (2000) Immunolocalization of LM2 arabinogalactan protein epitope associated with endomembranes of plant cells. Protoplasma 212:186–196

    Google Scholar 

  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel D (2004) Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 135:1150–1161

    PubMed  Google Scholar 

  • Šamaj J, Müller J, Beck M, Böhm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11:594–600

    PubMed  Google Scholar 

  • Sandstrom DJ (2004) Isoflurane depresses glutamate release by reducing neuronal excitability at the Drosophila neuromuscular junction. J Physiol 558:489–502

    PubMed  CAS  Google Scholar 

  • Sangwan V, Dhindsa RS (2002) In vivo and in vitro activation of temperature-responsive plant MAP kinases. FEBS Lett 531:561–564

    PubMed  CAS  Google Scholar 

  • Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629–638

    PubMed  CAS  Google Scholar 

  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluška F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388

    PubMed  CAS  Google Scholar 

  • Schapire AL, Valpuesta V, Botella MA (2009) Plasma membrane repair in plants. Trends Plant Sci 14:645–652

    PubMed  CAS  Google Scholar 

  • Schreurs WJ, Harold FM (1988) Transcellular proton current in Achlya bisexualis hyphae: relationship to polarized growth. Proc Natl Acad Sci U S A 85:1534–1538

    Google Scholar 

  • Scita G, Di Fiore PP (2010) Endocytic matrix. Nature 463:464–473

    PubMed  CAS  Google Scholar 

  • Scott BIH (1956) Electric oscillations generated by plant roots and a possible feedback mechanism responsible for them. Aust J Biol Sci 10:164–179

    Google Scholar 

  • Scott BIH (1967) Electric fields in plants. Annu Rev Plant Physiol 18:409–418

    CAS  Google Scholar 

  • Sedensky MM, Siefker JM, Koh JY, Miller DM III, Morgan PG (2004) A stomatin and a degenerin interact in lipid rafts of the nervous systemof Caenorhabditis elegans. Am J Physiol Cell Physiol 287:C468–C474

    PubMed  CAS  Google Scholar 

  • Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S (2011) A role for endocytic recycling in hyphal growth. Fungal Biol 115:541–546

    PubMed  Google Scholar 

  • Shibasaki K, Uemura M, Tsurumi S, Rahman A (2009) Auxin response in Arabidopsis under cold stress: underlying auxin response in Arabidopsis under cold stress. Plant Cell 21:3823–3838

    PubMed  CAS  Google Scholar 

  • Shope JC, Mott KA (2006) Membrane trafficking and osmotically induced volumechanges in guard cells. J Exp Bot 57:4123–4131

    PubMed  CAS  Google Scholar 

  • Shope JC, DeWald DB, Mott KA (2003) Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133:1314–1321

    PubMed  CAS  Google Scholar 

  • Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP (2012) Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 92:273–366

    PubMed  CAS  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

    PubMed  CAS  Google Scholar 

  • Singaram VK, Somerlot BH, Falk SA, Falk MJ, Sedensky MM, Morgan PG (2011) Optical reversal of halothane-induced immobility in C. elegans. Curr Biol 21:2070–2076

    PubMed  CAS  Google Scholar 

  • Sisneros JA, Tricas TC (2002) Neuroethology and life history adaptations of the elasmobranch electric sense. J Physiol - Paris 96:379–389

    PubMed  CAS  Google Scholar 

  • Smalheiser NR (2007) Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biol Direct 2:35

    PubMed  Google Scholar 

  • Solovyov IA, Schulten K (2009) Magnetoreception through cryptochrome may involve superoxide. Biophys J 96:4804-4813

    CAS  Google Scholar 

  • Somers DE, Fujiwara S (2009) Thinking outside the F-box: novel ligands for novel receptors. Trends Plant Sci 14:206–213

    PubMed  CAS  Google Scholar 

  • Sonner JM (2008) A hypothesis on the origin and evolution of the response to inhaled anesthetics. Anesth Analg 107:849–854

    PubMed  Google Scholar 

  • Stanley SA, Gagner JE, Damanpour S, Yoshida M, Dordick JS, Friedman JM (2012) Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 336:604–608

    PubMed  CAS  Google Scholar 

  • Staykova M, Stone HA (2011) The role of the membrane confinement in the surface area regulation of cells. Commun Integr Biol 4:616–618

    PubMed  CAS  Google Scholar 

  • Staykova M, Holmes DP, Read C, Stone HA (2011) Mechanics of surface area regulation in cells examined with confined lipid membranes. Proc Natl Acad Sci U S A 108:9084–9088

    PubMed  CAS  Google Scholar 

  • Steinhardt RA (2005) The mechanisms of cell membrane repair: a tutorial guide to key experiments. Ann N Y Acad Sci 1066:152–165

    PubMed  CAS  Google Scholar 

  • Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular, mechanism similar to neurotransmitter release. Science 263:390–393

    PubMed  CAS  Google Scholar 

  • Stenz HG, Weisenseel MH (1993) Electrotropism of maize (Zea mays L.) roots. Plant Physiol 101:1107–1111

    PubMed  Google Scholar 

  • Stolarz M, El Krol, Dziubinska H, Kurenda A (2010) Glutamate induces series of action potentials and a decrease in circumnutation rate in Helianthus annuus. Physiol Plant 138:329–338

    PubMed  CAS  Google Scholar 

  • Sullivan S, Kaiserli E, Tseng TS, Christie JM (2010) Subcellular localization and turnover of Arabidopsis phototropin 1. Plant Signal Behav 5:184–186

    PubMed  CAS  Google Scholar 

  • Swartz KJ (2008) Sensing voltage across lipid membranes. Nature 456:891–897

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Schmid J, Caldwell JH, Harold FM (1988) Transcellular ion currents and extension of Neurospora crassa hyphae. J Membr Biol 101:33–41

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Kutsuna N, Kanazawa Y, Kondo N, Hasezawa S, Sano T (2007) Intra-vacuolar reserves of membranes during stomatal closure: the possible role of guard cell vacuoles estimated by 3-D reconstruction. Plant Cell Physiol 48:1159–1169

    PubMed  CAS  Google Scholar 

  • Tasaki I (1999) Evidence for phase transitions in nerve fibers, cells and synapses. Ferroelectrics 220:305–316

    CAS  Google Scholar 

  • Tasaki I, Kusano K, Byrne PM (1989) Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys J 55:1033–1040

    PubMed  CAS  Google Scholar 

  • Taylor DD, Gercel-Taylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33:441–454

    PubMed  CAS  Google Scholar 

  • Taylorson RB, Hendricks SB (1979) Overcoming dormancy in seeds with ethanol and other anesthetics. Planta I45:507–510

    Google Scholar 

  • Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as, conveyors of immune responses. Nat Rev Immunol 9:581–593

    PubMed  Google Scholar 

  • Tobias JM (1960) Further studies on the nature of the excitable system in nerve. I. Voltage-induced axoplasm movement in squid axons. J Gen Physiol 43:57–71

    PubMed  CAS  Google Scholar 

  • Togo T, Alderton JM, Steinhardt RA (2003) Long-term potentiation of exocytosis, and cell membrane repair in fibroblasts. Mol Biol Cell 14:93–106

    PubMed  CAS  Google Scholar 

  • Trewavas AJ, Baluška F (2011) The ubiquity of consciousness. EMBO Rep 12:1221–1225

    PubMed  CAS  Google Scholar 

  • Trkanjec Z (1996) Eletrostatic attraction: the driving force for the presynaptic vesicle-cell membrane fusion. Med Hypoth 47:93–96

    CAS  Google Scholar 

  • Trkanjec Z, Demarin V (2001) Presynaptic vesicle, exocytosis, membrane fusion and basic physical forces. Med Hypoth 56:540–546

    CAS  Google Scholar 

  • Tsuchiya H, Ueno T, Mizogami M, Takakura K (2010) Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity. Chem Biol Interact 183:19–24

    PubMed  CAS  Google Scholar 

  • Uesono Y (2009) Environmental stresses and clinical drugs paralyze a cell. Commun Integr Biol 2:1–4

    Google Scholar 

  • Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    PubMed  CAS  Google Scholar 

  • Veech RL, Kashiwaya Y, Gates DN, King MT, Clarke K (2002) The energetics of ion distribution: the origin of the resting electric potential of cells. IUBMB Life 54:241–252

    PubMed  CAS  Google Scholar 

  • Vissenberg K, Feijó JA, Weisenseel MH, Verbelen J-P (2001) Ion fluxes, auxin and the induction of elongation growth in Nicotiana tabacum cells. J Exp Bot 52:2161–2167

    PubMed  CAS  Google Scholar 

  • Voigt B, Timmers A, Šamaj J, Hlavacka A, Ueda T, Preuss M, Nielsen E, Mathur J, Emans N, Stenmark H, Nakano A, Baluška F, Menzel D (2005) Actin-based motility of endosomes is linked to polar tip-growth of root hairs. Eur J Cell Biol 84:609–621

    PubMed  CAS  Google Scholar 

  • Wan Y, Eisinger W, Ehrhardt D, Kubitscheck U, Baluška F, Briggs W (2008) The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1:103–117

    PubMed  CAS  Google Scholar 

  • Wan Y, Jasik J, Wang L, Hao H, Volkmann D, Menzel D, Mancuso S, Baluška F, Lin J (2012) The signal transducer NPH3 integrates the Phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24:551–565

    PubMed  CAS  Google Scholar 

  • Wang ET, Zhao M (2010) Regulation of tissue repair and regeneration by electric fields. Chin J Traumatol 13:55–61

    PubMed  Google Scholar 

  • Wawrecki W, Zagórska-Marek B (2007) Influence of a weak DC electric field on root meristem architecture. Ann Bot 100:791–796

    PubMed  Google Scholar 

  • Weaver JC, Vaughan TE, Martin GT (1999) Biological effects due to weak electric and magnetic fields: the temperature variation threshold. Biophys J 76:3026–3030

    PubMed  CAS  Google Scholar 

  • Weaver JC, Vaughan TE, Astumian RD (2000) Biological sensing of small field differences by magnetically sensitive chemical reactions. Nature 405:707–709

    PubMed  CAS  Google Scholar 

  • Wei T, Hibino H, Omura T (2009) Release of rice dwarf virus from insect vector cells involves secretory, exosomes derived from multivesicular bodies. Commun Integr Biol 2:324–326

    PubMed  CAS  Google Scholar 

  • Weisenseel MH, Nuccitelli R, Jaffe LF (1975) Large electrical currents traverse growing pollen tubes. J Cell Biol 66:556–567

    PubMed  CAS  Google Scholar 

  • Weisenseel MH, Dorn A, Jaffe LF (1979) Natural H currents traverse growing roots and root hairs of Barley (Hordeum vulgare L.). Plant Physiol 64:512–518

    PubMed  CAS  Google Scholar 

  • Wiklund RA, Allison AC (1972) The effects of anaesthetics on the motility of Dictyostelium discoideum: evidence for a possible mechanism of anaesthesia. Br J Anaesth 44:622

    PubMed  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (2012) Magnetoreception. Adv Exp Med Biol 739:126–141

    PubMed  Google Scholar 

  • Witzany G, Baluška F (2012) Turing: a formal clash of codes. Nature 483:541

    PubMed  CAS  Google Scholar 

  • Wlodarczyk A, McMillan PF, McMillan SA (2006) High pressure effects in anaesthesia and narcosis. Chem Soc Rev 35:890–898

    PubMed  CAS  Google Scholar 

  • Wojtaszek P, Volkmann D, Baluška F (2004) Polarity and cell walls. In: Lindsey K (ed) Polarity in plants. Blackwell Publishing, Oxford, pp 72–121

    Google Scholar 

  • Wolfe J, Steponkus PL (1983) Mechanical properties of the plasma membrane of isolated plant protoplasts. Plant Physiol 71:276–285

    PubMed  CAS  Google Scholar 

  • Wolfe J, Dowgert MF, Steponkus PL (1985) Dynamics of incorporation of material into the plasma membrane and the lysis of protoplasts during rapid expansions in area. J Membr Biol 86:127–138

    Google Scholar 

  • Wolfe J, Dowgert MF, Steponkus PL (1986) Mechanical study of the deformation and rupture of the plasma membranes of protoplasts during osmotic expansions. J Membr Biol 93:63–74

    Google Scholar 

  • Wolverton C, Mullen JL, Aizawa S, Yoshizaki I, Kamigaichi S, Mukai C, Shimazu T, Fukui K, Evans ML, Ishikawa H (1999) Inhibition of root elongation in microgravity by an applied electric field. J Plant Res 112:493–496

    PubMed  CAS  Google Scholar 

  • Wolverton C, Mullen JL, Ishikawa H, Evans ML (2000) Two distinct regions of response drive differential growth in Vigna root electrotropism. Plant Cell Environ 23:1275–1280

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404

    PubMed  CAS  Google Scholar 

  • Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216:527–535

    PubMed  CAS  Google Scholar 

  • Yao L, McCaig CD, Zhao M (2009) Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19:855–868

    PubMed  CAS  Google Scholar 

  • Yao L, Pandit A, Yao S, McCaig CD (2011) Electric field-guided neuron migration: a novel approach in neurogenesis. Tissue Eng Part B Rev 17:143–153

    PubMed  Google Scholar 

  • Yu Q, Hlavačka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluška F (2002) Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant Physiol 130:415–421

    PubMed  CAS  Google Scholar 

  • Žárský V, Potocký M (2010) Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst. Biochem Soc Trans 38:723–728

    PubMed  Google Scholar 

  • Zhang Y, He J, Lee D, McCormick S (2010) Interdependence of endomembrane trafficking and actin dynamics during polarized growth of Arabidopsis pollen tubes. Plant Physiol 152:2200–2210

    PubMed  CAS  Google Scholar 

  • Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z (2010) Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. Plant Cell 22:4031–4044

    PubMed  CAS  Google Scholar 

  • Zhong Y-G, Zhang G-J, Yang L, Zheng Y-Z (2000) Effects of photoinduced membrane rigidification on the lysosomal permeability to potassium ions. Photochem Photobiol 71:627–633

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Schnettler R, Klöck G, Watzka H, Donath E, Glaser RW (1990) Mechanisms of electrostimulated uptake of macromolecules into living cells. Naturwissenschaften 77:543–545

    PubMed  CAS  Google Scholar 

  • Zonia L, Munnik T (2009) Uncovering hidden treasures in pollen tube growth mechanics. Trends Plant Sci 14:318–327

    PubMed  CAS  Google Scholar 

  • Zorec R, Tester M (1993) Rapid pressure driven exocytosis–endocytosis cycle in a single plant cell. FEBS Lett 333:283–286

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Baluška .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baluška, F., Wan, YL. (2012). Physical Control Over Endocytosis. In: Šamaj, J. (eds) Endocytosis in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32463-5_6

Download citation

Publish with us

Policies and ethics