Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

Abstract

Solids have strength that requires a different treatment than done for a fluid. This chapter will give the treatment of an elastic–plastic solid, porous solids, and strength of materials after being shock compressed. For some materials the elastic–plastic model will not be adequate and the reader will have to find the more sophisticated approach in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Kolsky, Stress Waves in Solids (Dover, New York, 1963)

    Google Scholar 

  2. W. Band, Introduction to Mathematical Physics (D. Van Nostrand, New Jersey, 1959)

    MATH  Google Scholar 

  3. R. Hill, The Mathematical Theory of Plasticity (Oxford University Press, London, 1956)

    Google Scholar 

  4. G.R. Fowles, Shock wave compression of hardened and annealed 2024 aluminum. J. Appl. Phys. 32, 1475 (1961)

    Article  Google Scholar 

  5. J.O. Erkman, G.E. Duvall, Elastoplasticity and the attenuation of shock waves. in Proceedings of the Ninth Midwestern Mechanics Conference, Madison, Wisconsin, 16–18 Aug 1965, pp. 179–188, a Midwestern Mechanics Conference Publication

    Google Scholar 

  6. J.O. Erkman, A.B.. Christensen, Attenuation of shock waves in aluminum. J. Appl. Phys. 38(13), 5395–5403 (1967)

    Article  Google Scholar 

  7. G.E. Duvall, Physics of High Energy Density, (Academic, New York, 1971), p. 23, Library of Congress 72–119469

    Google Scholar 

  8. G.E. Duvall, G.R. Fowles, in High Pressure Physics and Chemistry, ed. by R.S. Bradley, vol. 2 (Academic, New York, 1963), p. 221

    Google Scholar 

  9. J.W. Enig, A complete E, P, V, R, S thermodynamic description of metals based on the P, u mirror-image approximation. J. Appl. Phys. 34(4), 746–754 (1963). Also Erratum: 35, p. 465, 1964

    Article  MATH  Google Scholar 

  10. C.D. Lundergan, W. Herrmann, Equation of state of 6061-T6 alluminum at low pressures. J. Appl. Phys. 34(7), 2046–2052 (1963)

    Article  Google Scholar 

  11. G.I. Kerley, Calculation of release adiabats and shock impedance matching. Kerley Technical Services Research Report KTS08-1 (March 2008)

    Google Scholar 

  12. C.S. Smith, C.M. Fowler, Further metallographic studies on metals after explosive shock, in Response of Metals to High Velocity Deformation, ed. by G. Shewmon, V.I. Zackay (Interscience, New York, 1961), pp. 309–342

    Google Scholar 

  13. S.P. Marsh (ed.), LASL Shock Hugoniot Data (University of California Press, Berkeley, 1980)

    Google Scholar 

  14. J.N. Johnson, L.M. Barker, Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum. J. Appl. Phys. 40(11), 4321–4334 (1969)

    Article  Google Scholar 

  15. L.M. Barker, C.D. Lundergan, W. Hermann, Dynamic response of aluminum. J. Appl. Phys. 35(4), 1203–1212 (1964)

    Article  Google Scholar 

  16. L.M. Barker, Fine structure of compressive and release wave shapes in aluminum measured by the velocity interferometry technique, pp. 483–505. Behavior of Dense Media Under High Dynamic Pressures, Gordon and Breech, 1968.6-Gig10

    Google Scholar 

  17. J. Lipkin, J.R. Asay, Reshock and release of shock-compressed 6061-T6 aluminum. J. Appl. Phys. 48, 182 (1977)

    Article  Google Scholar 

  18. J.R. Asay, J. Lipkin, A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys. 49, 4242 (1978)

    Article  Google Scholar 

  19. J.R. Asay, L.C. Chhabildas, in Shock Waves and High Strain-Rate Phenomena in Metals: Concepts and Applications, ed. by M.A. Meyers, L.E. Murr (Plenum, New York, 1981), p. 417

    Chapter  Google Scholar 

  20. H. Huang, J.R. Asay, Compressive strength measurements in aluminum for shock compression over the stress range of 4–22 GPa. J. Appl. Phys. 98, 033524 (2005)

    Article  Google Scholar 

  21. W.D. Reinhart, J.R. Asay, L.C. Chhabildas, C.S. Alexander, Investigation of 6061 T-6 aluminum strength properties to 160 GPa. in Proceedings of Shock Compression of Condensed Matter-2009, Nashville 2009, p. 977, ed. by M.L. Elert, M.D. Furnish, W.W. Anderson, W.G. Proud

    Google Scholar 

  22. S. Sheffield, R. Gustavsen, M. Anderson, Chapter 2 in High-Pressure Shock Compression of Solids IV, ed. by L. Davison, Y. Horie, M. Shahinpoor (Springer-Verlag, New York, 1997)

    Google Scholar 

  23. K. Krupnikov, M.I. Brazhnik, V.P. Krupnikova, Shock compression of porous tungsten. Sov. Phys. JETP 15(3), 470–476 (1962)

    Google Scholar 

  24. J.R. Asay, D.B. Hayes, Shock-compression and release behavior near melt states in aluminum. J. Appl. Phys. 46, 4789–4799 (1975)

    Article  Google Scholar 

  25. W. Herrmann, Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40, 2490–2499 (1969)

    Article  Google Scholar 

  26. B.M. Butcher, C. J. Karnes, “Dynamic compaction of porous iron,” J. Appl. Phys. 40, 2967–2977 (1969)

    Google Scholar 

  27. J.O. Erkman, D.J. Edwards, Computed and experimental Hugoniots for unreacted porous high explosives. in Proceedings Sixth Symposium (International) on Detonation, White Oak, 24–27 Aug 1976, pp. 766–776

    Google Scholar 

  28. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Forbes .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forbes, J.W. (2012). Solids. In: Shock Wave Compression of Condensed Matter. Shock Wave and High Pressure Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32535-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32535-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32534-2

  • Online ISBN: 978-3-642-32535-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics