Skip to main content

Multi-objective Optimization for Incremental Decision Tree Learning

  • Conference paper
Data Warehousing and Knowledge Discovery (DaWaK 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7448))

Included in the following conference series:

Abstract

Decision tree learning can be roughly classified into two categories: static and incremental inductions. Static tree induction applies greedy search in splitting test for obtaining a global optimal model. Incremental tree induction constructs a decision model by analyzing data in short segments; during each segment a local optimal tree structure is formed. Very Fast Decision Tree [4] is a typical incremental tree induction based on the principle of Hoeffding bound for node-splitting test. But it does not work well under noisy data. In this paper, we propose a new incremental tree induction model called incrementally Optimized Very Fast Decision Tree (iOVFDT), which uses a multi-objective incremental optimization method. iOVFDT also integrates four classifiers at the leaf levels. The proposed incremental tree induction model is tested with a large volume of data streams contaminated with noise. Under such noisy data, we investigate how iOVFDT that represents incremental induction method working with local optimums compares to C4.5 which loads the whole dataset for building a globally optimal decision tree. Our experiment results show that iOVFDT is able to achieve similar though slightly lower accuracy, but the decision tree size and induction time are much smaller than that of C4.5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinlan, R.: Induction of Decision Trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  2. Quinlan, R.: C4.5: Programs for Machine Learning. MorganKaufmann, San Francisco (1993)

    Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1984)

    Google Scholar 

  4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proc of 6th ACM SIGKDD, pp. 71–80 (2000)

    Google Scholar 

  5. Elomaa, T.: The Biases of Decision Tree Pruning Strategies. In: Hand, D.J., Kok, J.N., Berthold, M. (eds.) IDA 1999. LNCS, vol. 1642, pp. 63–74. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Bradford, J., Kunz, C., Kohavi, R., Brunk, C., Brodley, C.: Pruning Decision Trees with Misclassification Costs. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 131–136. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Yang, H., Fong, S.: Moderated VFDT in Stream Mining Using Adaptive Tie Threshold and Incremental Pruning. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 471–483. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chernoff, H.: A measure of asymptotic efficiency for tests of a hypothesis based on the sums of observations. Annals of Mathematical Statistics 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gama, J., Ricardo, R.: Accurate decision trees for mining high-speed data streams. In: Proc. of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 523–528. ACM (2003)

    Google Scholar 

  10. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  11. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive Online Analysis. Journal of Machine Learning Research 11, 1601–1604 (2000)

    Google Scholar 

  12. Geoffrey, H., Richard, K., Bernhard, P.: Tie Breaking in Hoeffding trees. In: Gama, J., Aguilar-Ruiz, J.S. (eds.) Proceeding Workshop W6: Second International Workshop on Knowledge Discovery in Data Streams, pp. 107–116 (2005)

    Google Scholar 

  13. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proc. of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, pp. 97–106 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, H., Fong, S., Si, YW. (2012). Multi-objective Optimization for Incremental Decision Tree Learning. In: Cuzzocrea, A., Dayal, U. (eds) Data Warehousing and Knowledge Discovery. DaWaK 2012. Lecture Notes in Computer Science, vol 7448. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32584-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32584-7_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32583-0

  • Online ISBN: 978-3-642-32584-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics