Skip to main content

Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic \(\mathcal C^2\)-composite Functions

  • Conference paper
Parallel Problem Solving from Nature - PPSN XII (PPSN 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Included in the following conference series:

Abstract

The Information-Geometric Optimization (IGO) has been introduced as a unified framework for stochastic search algorithms. Given a parametrized family of probability distributions on the search space, the IGO turns an arbitrary optimization problem on the search space into an optimization problem on the parameter space of the probability distribution family and defines a natural gradient ascent on this space. From the natural gradients defined over the entire parameter space we obtain continuous time trajectories which are the solutions of an ordinary differential equation (ODE). Via discretization, the IGO naturally defines an iterated gradient ascent algorithm. Depending on the chosen distribution family, the IGO recovers several known algorithms such as the pure rank-μ update CMA-ES. Consequently, the continuous time IGO-trajectory can be viewed as an idealization of the original algorithm.

In this paper we study the continuous time trajectories of the IGO given the family of isotropic Gaussian distributions. These trajectories are a deterministic continuous time model of the underlying evolution strategy in the limit for population size to infinity and change rates to zero. On functions that are the composite of a monotone and a convex-quadratic function, we prove the global convergence of the solution of the ODE towards the global optimum. We extend this result to composites of monotone and twice continuously differentiable functions and prove local convergence towards local optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auger, A.: Convergence results for the (1, λ)-SA-ES using the theory of ϕ-irreducible Markov chains. Theoretical Computer Science 334(1-3), 35–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Jägersküpper, J.: Probabilistic runtime analysis of (1 + ,λ), ES using isotropic mutations. In: Proceedings of the 2006 Genetic and Evolutionary Computation Conference, GECCO 2006, pp. 461–468. ACM (2006)

    Google Scholar 

  3. Jägersküpper, J.: How the (1 + 1) ES using isotropic mutations minimizes positive definite quadratic forms. Theoretical Computer Science 361(1), 38–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jägersküpper, J.: Algorithmic analysis of a basic evolutionary algorithm for continuous optimization. Theoretical Computer Science 379(3), 329–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnold, L., Auger, A., Hansen, N., Ollivier, Y.: Information-geometric optimization algorithms: a unifying picture via invariance principles. arXiv:1106.3708v1 (2011)

    Google Scholar 

  6. Hansen, N., Muller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary Computation 11(1), 1–18 (2003)

    Article  Google Scholar 

  7. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Proceedings of the 12th International Conference on Machine Learning (1995)

    Google Scholar 

  8. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self-adaptation of evolution strategies. Evolutionary Computation 2(4), 369–380 (1994)

    Article  Google Scholar 

  9. Glasmachers, T., Schaul, T., Yi, S., Wierstra, D., Schmidhuber, J.: Exponential natural evolution strategies. In: Proceedings of Genetic and Evolutionary Computation Conference, pp. 393–400. ACM (2010)

    Google Scholar 

  10. Yin, G.G., Rudolph, G., Schwefel, H.P.: Establishing connections between evolutionary algorithms and stochastic approximation. Informatica 1, 93–116 (1995)

    MathSciNet  Google Scholar 

  11. Yin, G.G., Rudolph, G., Schwefel, H.P.: Analyzing the (1, λ) evolution strategy via stochastic approximation methods. Evolutionary Computation 3(4), 473–489 (1996)

    Article  Google Scholar 

  12. Kushner, H.J., Yin, G.G.: Stochastic approximation and recursive algorithms and applications, 2nd edn. Springer (2003)

    Google Scholar 

  13. Malagò, L., Matteucci, M., Pistone, G.: Towards the geometry of estimation of distribution algorithms based on the exponential family. In: Proceedings of Foundations of Genetic Algorithms (FOGA 2011), pp. 230–242. ACM (2011)

    Google Scholar 

  14. Akimoto, Y., Nagata, Y., Ono, I., Kobayashi, S.: Theoretical foundation for CMA-ES from information geometry perspective. Algorithmica, Online First (2011)

    Google Scholar 

  15. Khalil, H.K.: Nonlinear systems. Prentice-Hall, Inc. (2002)

    Google Scholar 

  16. Borkar, V.S.: Stochastic approximation: a dynamical systems viewpoint. Cambridge University Press (2008)

    Google Scholar 

  17. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. arXiv:1111.5280v2 (2011)

    Google Scholar 

  18. Thorisson, H.: Coupling, stationarity, and regeneration. Springer (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Akimoto, Y., Auger, A., Hansen, N. (2012). Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic \(\mathcal C^2\)-composite Functions. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics