Skip to main content

MEG and Multimodal Integration

  • Chapter
  • First Online:
Magnetoencephalography

Abstract

Functional brain imaging methods provide measures of various physiological processes with a range of spatial and temporal scales. Because the sensitivity properties of the imaging modalities differ, combining multimodal data is expected to provide more information about the brain activity than is available by a single method. In direct data fusion, multimodal data can be described as complementary or supportive. Complementary modalities have the same type of sources, such as electroencephalography (EEG) and magnetoencephalography (MEG), which are both generated by cortical primary currents, but with different sensitivity characteristics. Combination of EEG and MEG data can resolve ambiguities in data from only one of the modalities. In a supportive role data from one imaging modality guides the analysis and interpretation of another modality. Structural magnetic resonance imaging (MRI) provides supportive data for MEG source estimation, e.g., by indicating allowable locations and orientations of MEG source currents. Functional MRI (fMRI) can be used in a supportive role to suggest a likely source distribution for MEG among multiple alternatives. MEG and fMRI can also be considered complementary if the different source types, i.e., primary currents for MEG and blood oxygenation level dependent (BOLD) contrast for fMRI, are both derived from a common physiological model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors SP, Hämäläinen MS (2012) MEG and EEG: source estimation. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, pp 257–286

    Google Scholar 

  • Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010a) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232

    Google Scholar 

  • Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hämäläinen MS, Halgren E (2010b) Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum Brain Mapp 31:140–149

    Google Scholar 

  • Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates. NeuroImage 22:323–332

    Google Scholar 

  • Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RB, Aronen HJ, Ilmoniemi RJ (1999) Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J Neurophysiol 82:2545–2555

    Google Scholar 

  • Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hämäläinen MS, Lampinen J, Jääskeläinen IP (2009) Automatic fMRI-guided MEG multidipole localization for visual responses. Hum Brain Mapp 30:1087–1099

    Google Scholar 

  • Babajani A, Soltanian-Zadeh H (2006) Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans Biomed Eng 53:1794–1801

    Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. NeuroImage 19:1–15

    Google Scholar 

  • Babiloni F, Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, Tecchio F, Babiloni C (2001) Linear inverse source estimate of combined EEG and MEG data related to voluntary movements. Hum Brain Mapp 14:197–209

    Google Scholar 

  • Baillet S, Garnero L (1997) A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans Biomed Eng 44:374–385

    Google Scholar 

  • Baillet S, Garnero L, Marin G, Hugonin JP (1999) Combined MEG and EEG source imaging by minimization of mutual information. IEEE Trans Biomed Eng 46:522–534

    Google Scholar 

  • Baule G, McFee R (1965) Theory of magnetic detection of the heart’s electrical activity. J Appl Phys 36:2066–2073

    Google Scholar 

  • Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7:1121–1124

    Google Scholar 

  • Bojak I, Oostendorp TF, Reid AT, Kötter R (2011) Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Phil Trans R Soc A 369:3785–3801

    MATH  Google Scholar 

  • Chang WT, Ahlfors SP, Lin FH (2013) Sparse current source estimation for MEG using loose orientation constraints. Hum Brain Mapp 34:2190–2201

    Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Google Scholar 

  • Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51

    Google Scholar 

  • Cuffin BN, Cohen D (1979) Comparison of the magnetoencephalogram and electroencephalogam. Electroencephalogr Clin Neurophysiol 47:132–146

    Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Google Scholar 

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, Benali H (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36:69–87

    Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20:1743–1755

    Google Scholar 

  • de Jongh A, de Munck JC, Goncalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Google Scholar 

  • Dehghani N, Cash SS, Chen CC, Hagler DJ Jr, Huang M, Dale AM, Halgren E (2010) Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS ONE 5:e11454

    Google Scholar 

  • Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Pizzella V, Tartaro A, Torquati K, Bonomo L, Romani GL, Rossini PM (2002) Topographic organization of the human primary and secondary somatosensory cortices: comparison of fMRI and MEG findings. NeuroImage 17:1373–1383

    Google Scholar 

  • Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol 27:360–371

    Google Scholar 

  • Eulitz C, Eulitz H, Elbert T (1997) Differential outcomes from magneto- end electroencephalography for the analysis of human cognition. Neurosci Lett 227:185–188

    Google Scholar 

  • Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. Int J Psychophysiol 73:43–52

    Google Scholar 

  • Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: applications. NeuroImage 16:484–512

    Google Scholar 

  • Fuchs M, Wagner M, Wischmann HA, Kohler T, Theissen A, Drenckhahn R, Buchner H (1998) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107:93–111

    Google Scholar 

  • Fujimaki N, Hayakawa T, Nielsen M, Knosche TR, Miyauchi S (2002) An fMRI-constrained MEG source analysis with procedures for dividing and grouping activation. NeuroImage 17:324–343

    Google Scholar 

  • George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD, Sanders JA, Belliveau JW (1995) Mapping function in the human brain with MEG, anatomical MRI and functional MRI. J Clin Neurophysiol 12:406–431

    Google Scholar 

  • George JS, Lewis PS, Ranken DM, Kaplan L, Wood CC (1991) Anatomical constraints for neuromagnetic source models. SPIE Med Imaging V Image Phys 1443:37–51

    Google Scholar 

  • Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M, Vaina LM, Stufflebeam SM (2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum Brain Mapp 30:1077–1086

    Google Scholar 

  • Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J 13:911–925

    Google Scholar 

  • Hagler DJ Jr, Ahmadi ME, Kuperman J, Holland D, McDonald CR, Halgren E, Dale AM (2009) Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Hum Brain Mapp 30:1535–1547

    Google Scholar 

  • Hämäläinen M, Hari R, Lounasmaa OV, Williamson SJ (1995) Do auditory stimuli activate human parietal brain regions? NeuroReport 6:1712–1714

    Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    Google Scholar 

  • Hansen P, Kringelbach M, Salmelin R (2010) MEG: an introduction to methods. Oxford University Press, New York

    Google Scholar 

  • Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23:728–739

    Google Scholar 

  • He B, Liu Z (2008) Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 1:23–40

    Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Münte TF, Gös A, Scherg M, Johannes S, Hundeshagen H, Gazzaniga MS, Hillyard SA (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Google Scholar 

  • Henson RN, Glandin G, Friston KJ, Mattout J (2010) A parametric empirical Bayesian framework for fMRI-constrained MEG/EEG source reconstruction. Hum Brain Mapp 31:1512–1531

    Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16:638–650

    Google Scholar 

  • Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage 59:3909–3921

    Google Scholar 

  • Horwitz B, Poeppel D (2002) How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 17:1–3

    Google Scholar 

  • Horwitz B, Tagamets MA, McIntosh AR (1999) Neural modeling, functional brain imaging, and cognition. Trends Cogn Sci 3:91–98

    Google Scholar 

  • Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

    Google Scholar 

  • Im CH, Jung HK, Fujimaki N (2005) fMRI-constrained MEG source imaging and consideration of fMRI invisible sources. Hum Brain Mapp 26:110–118

    Google Scholar 

  • Im CH, Lee SY (2006) A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study. Phys Med Biol 51:6005–6021

    Google Scholar 

  • Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. NeuroImage 10:738–748

    Google Scholar 

  • Jun SC, George JS, Kim W, Pare-Blagoev J, Plis S, Ranken DM, Schmidt DM (2008) Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. NeuroImage 40:1581–1594

    Google Scholar 

  • Knake S, Halgren E, Shiraishi H, Hara K, Hamer HM, Grant PE, Carr VA, Foxe D, Camposano S, Busa E, Witzel T, Hämäläinen MS, Ahlfors SP, Bromfield EB, Black PM, Bourgeois BF, Cole AJ, Cosgrove GR, Dworetzky BA, Madsen JR, Larsson PG, Schomer DL, Thiele EA, Dale AM, Rosen BR, Stufflebeam SM (2006) The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

    Google Scholar 

  • Korvenoja A, Huttunen J, Salli E, Pohjonen H, Martinkauppi S, Palva JM, Lauronen L, Virtanen J, Ilmoniemi RJ, Aronen HJ (1999) Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Hum Brain Mapp 8:13–27

    Google Scholar 

  • Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13

    MATH  Google Scholar 

  • Lin YY, Shih YH, Hsieh JC, Yu HY, Yiu CH, Wong TT, Yeh TC, Kwan SY, Ho LT, Yen DJ, Wu ZA, Chang MS (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. NeuroImage 19:1115–1126

    Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci USA 95:8945–8950

    Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62

    Google Scholar 

  • Liu Z, Ding L, He B (2006) Integration of EEG/MEG with MRI and fMRI. IEEE Eng Med Biol Mag 25:46–53

    Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Google Scholar 

  • Lopes da Silva FH (2010) Electrophysiological basis of MEG signals. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York, pp 1–23

    Google Scholar 

  • Mäkelä JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama J-P (1993) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1:48–56

    Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Google Scholar 

  • Mathiak K, Fallgatter AJ (2005) Combining magnetoencephalography and functional magnetic resonance imaging. Int Rev Neurobiol 68:121–148

    Google Scholar 

  • Mathiak K, Rapp A, Kircher TT, Grodd W, Hertrich I, Weiskopf N, Lutzenberger W, Ackermann H (2002) Mismatch responses to randomized gradient switching noise as reflected by fMRI and whole-head magnetoencephalography. Hum Brain Mapp 16:190–195

    Google Scholar 

  • Melcher JR, Cohen D (1988) Dependence of the MEG on dipole orientation in the rabbit head. Electroencephalogr Clin Neurophysiol 70:460–472

    Google Scholar 

  • Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging. Cambridge University Press, Cambridge

    Google Scholar 

  • Molins A, Stufflebeam SM, Brown EN, Hämäläinen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. NeuroImage 42:1069–1077

    Google Scholar 

  • Moradi F, Liu LC, Cheng K, Waggoner RA, Tanaka K, Ioannides AA (2003) Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. NeuroImage 18:595–609

    Google Scholar 

  • Morioka T, Mizushima A, Yamamoto T, Tobimatsu S, Matsumoto S, Hasuo K, Fujii K, Fukui M (1995) Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials. Neuroradiology 37:526–530

    Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46:245–259

    Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroencephalogr Clin Neurophysiol 86:303–321

    Google Scholar 

  • Muravchik C, Bria O, Nehorai A (2000) EEG/MEG error bounds for a dynamic dipole source with a realistic head model. Methods Inf Med 39:110–113

    Google Scholar 

  • Ossenblok P, de Munck JC, Colon A, Drolsbach W, Boon P (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Google Scholar 

  • Pflieger ME, Simpson GV, Ahlfors SP, Ilmoniemi RJ (2000) Superadditive information from simultaneous MEG/EEG Data. In: Aine CJ, Okada Y, Stroink G, Swithenby SJ, Wood CC (eds) BioMag96: 10th international conference on biomagnetism, vol II. Springer, Santa Fe, NM, pp 1154–1157

    Google Scholar 

  • Phillips JW, Leahy RM, Mosher JC, Timsari B (1997) Imaging neural activity using MEG and EEG. IEEE Eng Med Biol Mag 16:34–42

    Google Scholar 

  • Plis SM, Calhoun VD, Weisend MP, Eichele T, Lane T (2010) MEG and fMRI Fusion for Non-Linear Estimation of Neural and BOLD Signal Changes. Front Neuroinform 4:114

    Google Scholar 

  • Poline J-P, Garnero L, Lahaue P-J (2010) Combining neuroimaging techniques: the future. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York, pp 273–299

    Google Scholar 

  • Ramantani G, Boor R, Paetau R, Ille N, Feneberg R, Rupp A, Boppel T, Scherg M, Rating D, Bast T (2006) MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 23:498–508

    Google Scholar 

  • Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T (2005) Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos Trans R Soc Lond B Biol Sci 360:1025–1041

    Google Scholar 

  • Riera JJ, Valdes PA, Tanabe K, Kawashima R (2006) A theoretical formulation of the electrophysiological inverse problem on the sphere. Phys Med Biol 51:1737–1758

    Google Scholar 

  • Rodin E, Funke M, Berg P, Matsuo F (2004) Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol 115:2041–2047

    Google Scholar 

  • Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci USA 95:773–780

    Google Scholar 

  • Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C, Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics? Brain 127:99–110

    Google Scholar 

  • Sanders JA, Lewine JD, Orrison WW (1996) Comparison of primary motor cortex localization using functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 4:47–57

    Google Scholar 

  • Sharon D, Hämäläinen MS, Tootell RB, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. NeuroImage 36:1225–1235

    Google Scholar 

  • Simpson GV, Pflieger ME, Foxe JJ, Ahlfors SP, Vaughan HG Jr, Hrabe J, Ilmoniemi RJ, Lantos G (1995) Dynamic neuroimaging of brain function. J Clin Neurophysiol 12:432–449

    Google Scholar 

  • Singh KD, Barnes GR, Hillebrand A, Forde EM, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. NeuroImage 16:103–114

    Google Scholar 

  • Stippich C, Freitag P, Kassubek J, Soros P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radu EW, Vieth JB (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. NeuroReport 9:1953–1957

    Google Scholar 

  • Stok CJ, Spekreijse HJ, Peters MJ, Boom HB, Lopes da Silva FH (1990) A comparative EEG/MEG equivalent dipole study of the pattern onset visual response. Electroencephalogr Clin Neurophysiol Suppl 41:34–50

    Google Scholar 

  • Sutherling WW, Levesque MF, Crandall PH, Barth DS (1991) Localization of partial epilepsy using magnetic and electric measurements. Epilepsia 32(Suppl 5):S29–S40

    Google Scholar 

  • Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci 7:76

    Google Scholar 

  • Torquati K, Pizzella V, Babiloni C, Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Rossini PM, Romani GL (2005) Nociceptive and non-nociceptive sub-regions in the human secondary somatosensory cortex: an MEG study using fMRI constraints. NeuroImage 26:48–56

    Google Scholar 

  • Tripp JH (1983) Physical concepts and mathematical models. In: Williamson SJ, Romani G-L, Kaufman L, Modena I (eds) Biomagnetism: an interdisciplinary approach. Plenum Press, New York, pp 101–139

    Google Scholar 

  • Tuunanen PI, Kavec M, Jousmäki V, Usenius JP, Hari R, Salmelin R, Kauppinen RA (2003) Comparison of BOLD fMRI and MEG characteristics to vibrotactile stimulation. NeuroImage 19:1778–1786

    Google Scholar 

  • Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 30:2701–2721

    Google Scholar 

  • Vartiainen J, Liljeström M, Koskinen M, Renvall H, Salmelin R (2011) Functional magnetic resonance imaging blood oxygenation level-dependent signal and magnetoencephalography evoked responses yield different neural functionality in reading. J Neurosci 31:1048–1058

    Google Scholar 

  • Vaughan HG Jr (1982) The neural origins of human event-related potentials. Ann N Y Acad Sci 388:125–138

    Google Scholar 

  • Vauhkonen M, Vadasz D, Karjalainen PA, Somersalo E, Kaipio JP (1998) Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging 17:285–293

    Google Scholar 

  • Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. Neuroimage 44:947–966

    Google Scholar 

  • Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7:49–66

    Google Scholar 

  • Wood CC, Cohen D, Cuffin BN, Allison T (1985) Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227:1051–1053

    Google Scholar 

  • Yoshinaga H, Nakahori T, Ohtsuka Y, Oka E, Kitamura Y, Kiriyama H, Kinugasa K, Miyamoto K, Hoshida T (2002) Benefit of simultaneous recording of EEG and MEG in dipole localization. Epilepsia 43:924–928

    Google Scholar 

  • Zijlmans M, Huiskamp GM, Leijten FS, Van Der Meij WM, Wieneke G, Van Huffelen AC (2002) Modality-specific spike identification in simultaneous magnetoencephalography/electroencephalography: a methodological approach. J Clin Neurophysiol 19:183–191

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo P. Ahlfors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahlfors, S.P. (2014). MEG and Multimodal Integration. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics