Skip to main content

On the Value of Job Migration in Online Makespan Minimization

  • Conference paper
Algorithms – ESA 2012 (ESA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7501))

Included in the following conference series:

Abstract

Makespan minimization on identical parallel machines is a classical scheduling problem. We consider the online scenario where a sequence of n jobs has to be scheduled non-preemptively on m machines so as to minimize the maximum completion time of any job. The best competitive ratio that can be achieved by deterministic online algorithms is in the range [1.88,1.9201]. Currently no randomized online algorithm with a smaller competitiveness is known, for general m.

In this paper we explore the power of job migration, i.e. an online scheduler is allowed to perform a limited number of job reassignments. Migration is a common technique used in theory and practice to balance load in parallel processing environments. As our main result we settle the performance that can be achieved by deterministic online algorithms. We develop an algorithm that is α m -competitive, for any m ≥ 2, where α m is the solution of a certain equation. For m = 2, α 2 = 4/3 and lim m → ∞  α m  = W − 1( − 1/e 2)/(1 + W − 1( − 1/e 2)) ≈ 1.4659. Here W − 1 is the lower branch of the Lambert W function. For m ≥ 11, the algorithm uses at most 7m migration operations. For smaller m, 8m to 10m operations may be performed. We complement this result by a matching lower bound: No online algorithm that uses o(n) job migrations can achieve a competitive ratio smaller than α m . We finally trade performance for migrations. We give a family of algorithms that is c-competitive, for any 5/3 ≤ c ≤ 2. For c = 5/3, the strategy uses at most 4m job migrations. For c = 1.75, at most 2.5m migrations are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, G., Motwani, R., Zhu, A.: The load rebalancing problem. Journal of Algorithms 60(1), 42–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29, 459–473 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bartal, Y., Karloff, H., Rabani, Y.: A better lower bound for on-line scheduling. Infomation Processing Letters 50, 113–116 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient scheduling problem. Journal of Computer and System Sciences 51, 359–366 (1995)

    Article  MathSciNet  Google Scholar 

  5. Cao, Q., Liu, Z.: Online scheduling with reassignment on two uniform machines. Theoretical Computer Science 411(31-33), 2890–2898 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Lan, Y., Benko, A., Dósa, G., Han, X.: Optimal algorithms for online scheduling with bounded rearrangement at the end. Theoretical Computer Science 412(45), 6269–6278 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, B., van Vliet, A., Woeginger, G.J.: A lower bound for randomized on-line scheduling algorithms. Information Processing Letters 51, 219–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B., van Vliet, A., Woeginger, G.J.: A optimal algorithm for preemptive online scheduling. Operations Research Letters 18, 127–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dósa, G., Epstein, L.: Preemptive Online Scheduling with Reordering. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 456–467. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online minimum makespan scheduling. In: Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 603–612 (2008)

    Google Scholar 

  11. Faigle, U., Kern, W., Turan, G.: On the performance of on-line algorithms for partition problems. Acta Cybernetica 9, 107–119 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Galambos, G., Woeginger, G.: An on-line scheduling heuristic with better worst case ratio than Graham’s list scheduling. SIAM J. on Computing 22, 349–355 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graham, R.L.: Bounds for certain multi-processing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  15. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Applied Mathematics 17(2), 416–429 (1969)

    Article  MATH  Google Scholar 

  16. Gormley, T., Reingold, N., Torng, E., Westbrook, J.: Generating adversaries for request-answer games. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 564–565 (2000)

    Google Scholar 

  17. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: Theoretical and practical results. Journal of the ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  18. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling problem. Journal of Algorithms 20, 400–430 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Min, X., Liu, J., Wang, Y.: Optimal semi-online algorithms for scheduling problems with reassignment on two identical machines. Information Processing Letters 111(9), 423–428 (2011)

    Article  MathSciNet  Google Scholar 

  20. Rudin III, J.F.: Improved bounds for the on-line scheduling problem. Ph.D. Thesis. The University of Texas at Dallas (May 2001)

    Google Scholar 

  21. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migration. Mathematics of Operations Research 34(2), 481–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sgall, J.: A lower bound for randomized on-line multiprocessor scheduling. Information Processing Letters 63, 51–55 (1997)

    Article  MathSciNet  Google Scholar 

  23. Tan, Z., Yu, S.: Online scheduling with reassignment. Operations Research Letters 36(2), 250–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Communications of the ACM 28, 202–208 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albers, S., Hellwig, M. (2012). On the Value of Job Migration in Online Makespan Minimization. In: Epstein, L., Ferragina, P. (eds) Algorithms – ESA 2012. ESA 2012. Lecture Notes in Computer Science, vol 7501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33090-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33090-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33089-6

  • Online ISBN: 978-3-642-33090-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics