Skip to main content

Sparse Learning Based Linear Coherent Bi-clustering

  • Conference paper
Algorithms in Bioinformatics (WABI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7534))

Included in the following conference series:

Abstract

Clustering algorithms are often limited by an assumption that each data point belongs to a single class, and furthermore that all features of a data point are relevant to class determination. Such assumptions are inappropriate in applications such as gene clustering, where, given expression profile data, genes may exhibit similar behaviors only under some, but not all conditions, and genes may participate in more than one functional process and hence belong to multiple groups. Identifying genes that have similar expression patterns in a common subset of conditions is a central problem in gene expression microarray analysis. To overcome the limitations of standard clustering methods for this purpose, Bi-clustering has often been proposed as an alternative approach, where one seeks groups of observations that exhibit similar patterns over a subset of the features. In this paper, we propose a new bi-clustering algorithm for identifying linear-coherent bi-clusters in gene expression data, strictly generalizing the type of bi-cluster structure considered by other methods. Our algorithm is based on recent sparse learning techniques that have gained significant attention in the machine learning research community. In this work, we propose a novel sparse learning based model, SLLB, for solving the linear coherent bi-clustering problem. Experiments on both synthetic data and real gene expression data demonstrate the model is significantly more effective than current bi-clustering algorithms for these problems. The parameter selection problem and the model’s usefulness in other machine learning clustering applications are also discussed. The on-line appendix for this paper can be found at http://www.cs.ualberta.ca/~ys3/SLLB .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, M., Ball, C.A., Blake, J.A., et al.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  2. Ayadi, W., Elloumi, M., Hao, J.K.: Pattern-driven neighborhood search for biclustering of microarray data. BMC Bioinformatics 13(suppl. 7), S11 (2012)

    Google Scholar 

  3. Ben-Dor, A., Chor, B., Karp, R., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving sub-matrix problem. In: RECOMB 2002, pp. 49–57 (2002)

    Google Scholar 

  4. Cheng, Y., Church, G.M.: Biclustering of expression data. In: ISMB 2000, pp. 93–103 (2000)

    Google Scholar 

  5. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863–14868 (1998)

    Article  Google Scholar 

  6. Faith, J.J., Driscoll, M.E., Fusaro, V.A., et al.: Many microbe microarrays database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucleic Acids Research 36, D866–D870 (2008)

    Article  Google Scholar 

  7. Gan, X., Liew, A.W.-C., Yan, H.: Discovering biclusters in gene expression data based on high-dimensional linear geometries. BMC Bioinformatics 9, 209 (2008)

    Article  Google Scholar 

  8. Gasch, A.P., Spellman, P.T., Kao, C.M., et al.: Genomic expression programs in the response of yeast cells to environmental changes. Nucleic Acids Research 11, 4241–4257 (2000)

    Google Scholar 

  9. Gupta, R., Kumar, V., Rao, N.: Discovery of error-tolerant biclusters from noisy gene expression data. Bioinformatics 12(suppl. 12), S1 (2011)

    Google Scholar 

  10. Hartigan, J.A.: Direct clustering of a data matrix. Journal of the American Statistical Association 67, 123–129 (1972)

    Article  Google Scholar 

  11. Ihmels, J., Bergmann, S., Barkai, N.: Defining transcription modules using large scale gene expression data. Bioinformatics 20, 1993–2003 (2004)

    Article  Google Scholar 

  12. Kanehisa, M.: The KEGG database. In: Novartis Foundation Symposium, vol. 247, pp. 91–101 (2002)

    Google Scholar 

  13. Keseler, I.M., Collado-Vides, J., Gama-Castro, S., et al.: EcoCyc: a comprehensive database resource for escherichia coli. Nucleic Acids Research 33, D334–D337 (2005)

    Article  Google Scholar 

  14. Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: A qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Research 37, e101 (2009)

    Article  Google Scholar 

  15. Liu, X., Wang, L.: Computing the maximum similarity bi-clusters of gene expression data. Bioinformatics 23, 50–56 (2006)

    Article  Google Scholar 

  16. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: A survey. Journal of Computational Biology and Bioinformatics 1, 24–45 (2004)

    Article  Google Scholar 

  17. Meng, J., Huang, Y.: Biclustering of time series microarray data. Methods Mol. Biol. 802, 87–100 (2012)

    Article  Google Scholar 

  18. Mirkin, B.: Mathematical classification and clustering. Kluwer Academic Publishers (1996)

    Google Scholar 

  19. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22, 1122–1129 (2006)

    Article  Google Scholar 

  20. Ruepp, A., Zollner, A., Maier, D., et al.: The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 32, 5539–5545 (2004)

    Article  Google Scholar 

  21. Shen, D., Lu, Z.: Computation of correlation coefficient and its confidence interval in SAS, http://www2.sas.com/proceedings/sugi31/170-31.pdf

  22. Shi, Y., Cai, Z., Lin, G., Schuurmans, D.: Linear Coherent Bi-cluster Discovery via Line Detection and Sample Majority Voting. In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp. 73–84. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Shi, Y., Hasan, M., Cai, Z., Lin, G., Schuurmans, D.: Linear coherent bi-cluster discovery via beam detection and sample set clustering. In: International Conference on Combinatorial Optimization and Applications, vol. 1, pp. 85–103 (2010)

    Google Scholar 

  24. Tamayo, P., Slonim, D., Mesirov, J., et al.: Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. PNAS 96, 2907–2912 (1999)

    Article  Google Scholar 

  25. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J., Church, G.M.: Systematic determination of genetic network architecture. Nature Genetics 22, 281–285 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, Y., Liao, X., Zhang, X., Lin, G., Schuurmans, D. (2012). Sparse Learning Based Linear Coherent Bi-clustering. In: Raphael, B., Tang, J. (eds) Algorithms in Bioinformatics. WABI 2012. Lecture Notes in Computer Science(), vol 7534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33122-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33122-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33121-3

  • Online ISBN: 978-3-642-33122-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics