Skip to main content

Type II Toxin-Antitoxin Loci: The Epsilon/zeta Family

  • Chapter
  • First Online:
Prokaryotic Toxin-Antitoxins

Abstract

Epsilon/zeta is a widespread TA gene family, members of which stabilise resistance plasmids in Gram-positive and -negative bacteria. Additionally, chromosomally encoded epsilon/zeta loci are virulence determinants in highly pathogenic Streptococcus pneumoniae strains. Here, we provide an overview of the unique mechanism of cell-poisoning by the toxin component, toxin inhibition by antitoxin, regulation of TA protein expression and possible biological functions of this system apart from plasmid maintenance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., & Blanot, D. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32, 168–207.

    Article  PubMed  CAS  Google Scholar 

  • Berry, A. M., & Paton, J. C. (2000). Additive attenuation of virulence of Streptococcus pneumoniae by mutation of the genes encoding pneumolysin and other putative pneumococcal virulence proteins. Infection and Immunity, 68, 133–140.

    Article  PubMed  CAS  Google Scholar 

  • Berry, A. M., Lock, R. A., Hansman, D., & Paton, J. C. (1989a). Contribution of autolysin to virulence of Streptococcus pneumoniae. Infection and Immunity, 57, 2324–2330.

    PubMed  CAS  Google Scholar 

  • Berry, A. M., Yother, J., Briles, D. E., Hansman, D., & Paton, J. C. (1989b). Reduced virulence of a defined pneumolysin-negative mutant of Streptococcus pneumoniae. Infection and Immunity, 57, 2037–2042.

    PubMed  CAS  Google Scholar 

  • Bordes, P., Cirinesi, A. M., Ummels, R., Sala, A., Sakr, S., Bitter, W., et al. (2011). SecB-like chaperone controls a toxin–antitoxin stress-responsive system in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 108, 8438–8443.

    Article  PubMed  CAS  Google Scholar 

  • Brantl, S., Behnke, D., & Alonso, J. C. (1990). Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAM beta 1 and pSM19035. Nucleic Acids Research, 18, 4783–4790.

    Article  PubMed  CAS  Google Scholar 

  • Braun, J. S., Sublett, J. E., Freyer, D., Mitchell, T. J., Cleveland, J. L., Tuomanen, E. I., et al. (2002). Pneumococcal pneumolysin and H(2)O(2) mediate brain cell apoptosis during meningitis. The Journal of Clinical Investigation, 109, 19–27.

    PubMed  CAS  Google Scholar 

  • Brown, J. S., Gilliland, S. M., & Holden, D. W. (2001). A Streptococcus pneumoniae pathogenicity island encoding an ABC transporter involved in iron uptake and virulence. Molecular Microbiology, 40, 572–585.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. S., Gilliland, S. M., Spratt, B. G., & Holden, D. W. (2004). A locus contained within a variable region of pneumococcal pathogenicity island 1 contributes to virulence in mice. Infection and Immunity, 72, 1587–1593.

    Article  PubMed  CAS  Google Scholar 

  • Brzozowska, I., Brzozowska, K., Zielenkiewicz, U. (2012). Functioning of the TA cassette of streptococcal plasmid pSM19035 in various Gram-positive bacteria. Plasmid, 68, 51–60.

    Google Scholar 

  • Camacho, A. G., Misselwitz, R., Behlke, J., Ayora, S., Welfle, K., Meinhart, A., et al. (2002). In vitro and in vivo stability of the ε 2 ζ 2 protein complex of the broad host-range Streptococcus pyogenes pSM19035 addiction system. Biological Chemistry, 383, 1701–1713.

    Article  PubMed  CAS  Google Scholar 

  • Ceglowski, P., Boitsov, A., Chai, S., & Alonso, J. C. (1993a). Analysis of the stabilization system of pSM19035-derived plasmid pBT233 in Bacillus subtilis. Gene, 136, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Ceglowski, P., Boitsov, A., Karamyan, N., Chai, S., & Alonso, J. C. (1993b). Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis. Molecular Genetics and Genomics, 241, 579–585.

    CAS  Google Scholar 

  • Christensen, S. K., Pedersen, K., Hansen, F. G., & Gerdes, K. (2003). Toxin–antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. Journal of Molecular Biology, 332, 809–819.

    Article  PubMed  CAS  Google Scholar 

  • Clewell, D. B. (1981). Plasmids, drug resistance, and gene transfer in the genus Streptococcus. Microbiological Reviews, 45, 409–436.

    PubMed  CAS  Google Scholar 

  • Cockeran, R., Theron, A. J., Steel, H. C., Matlola, N. M., Mitchell, T. J., Feldman, C., et al. (2001). Proinflammatory interactions of pneumolysin with human neutrophils. Journal of Infectious Diseases, 183, 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Croucher, N. J., Walker, D., Romero, P., Lennard, N., Paterson, G. K., Bason, N. C., et al. (2009). Role of conjugative elements in the evolution of the multidrug-resistant pandemic clone Streptococcus pneumoniae Spain23F ST81. Journal of Bacteriology, 191, 1480–1489.

    Article  PubMed  CAS  Google Scholar 

  • de la Hoz, A. B., Ayora, S., Sitkiewicz, I., Fernandez, S., Pankiewicz, R., Alonso, J. C., et al. (2000). Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proceedings of the National Academy of Sciences of the United States of America, 97, 728–733.

    Article  PubMed  Google Scholar 

  • Dixon, J. M., & Lipinski, A. E. (1972). Resistance of group A beta-hemolytic streptococci to lincomycin and erythromycin. Antimicrobial Agents and Chemotherapy, 1, 333–339.

    Article  PubMed  CAS  Google Scholar 

  • Du, W., Brown, J. R., Sylvester, D. R., Huang, J., Chalker, A. F., So, C. Y., et al. (2000). Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. Journal of Bacteriology, 182, 4146–4152.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pino, A., Balasubramanian, S., Wyns, L., Gazit, E., De Greve, H., Magnuson, R. D., et al. (2010). Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity. Cell, 142, 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, R. J., Jimenez, J. L., Chen, S., Tickle, I. J., Rossjohn, J., Parker, M., et al. (1999). Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell, 97, 647–655.

    Article  PubMed  CAS  Google Scholar 

  • Guiral, S., Mitchell, T. J., Martin, B., & Claverys, J. P. (2005). Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: Genetic requirements. Proceedings of the National Academy of Sciences of the United States of America, 102, 8710–8715.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, R. M., Stroeher, U. H., Ogunniyi, A. D., Smith-Vaughan, H. C., Leach, A. J., & Paton, J. C. (2011). A variable region within the genome of Streptococcus pneumoniae contributes to strain–strain variation in virulence. PLoS ONE, 6, e19650.

    Article  PubMed  CAS  Google Scholar 

  • Hirst, R. A., Kadioglu, A., O’Callaghan, C., & Andrew, P. W. (2004). The role of pneumolysin in pneumococcal pneumonia and meningitis. Clinical and Experimental Immunology, 138, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Holden, M. T., Hauser, H., Sanders, M., Ngo, T. H., Cherevach, I., Cronin, A., et al. (2009). Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS ONE, 4, e6072.

    Article  PubMed  Google Scholar 

  • Khoo, S. K., Loll, B., Chan, W. T., Shoeman, R. L., Ngoo, L., Yeo, C. C., et al. (2007). Molecular and structural characterization of the PezAT chromosomal toxin–antitoxin system of the human pathogen Streptococcus pneumoniae. Journal of Biological Chemistry, 282, 19606–19618.

    Article  PubMed  CAS  Google Scholar 

  • Leipe, D. D., Koonin, E. V., & Aravind, L. (2003). Evolution and classification of P-loop kinases and related proteins. Journal of Molecular Biology, 333, 781–815.

    Article  PubMed  CAS  Google Scholar 

  • Leplae, R., Geeraerts, D., Hallez, R., Guglielmini, J., Dreze, P., & Van Melderen, L. (2011). Diversity of bacterial type II toxin–antitoxin systems: A comprehensive search and functional analysis of novel families. Nucleic Acids Research, 39, 5513–5525.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Martin, M. T., Camacho, A. G., Lurz, R., Antelmann, H., Hecker, M., et al. (2006). pSM19035-encoded zeta toxin induces stasis followed by death in a subpopulation of cells. Microbiology, 152, 2365–2379.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Pratto, F., de la Hoz, A. B., Ayora, S., & Alonso, J. C. (2010). Plasmid pSM19035, a model to study stable maintenance in firmicutes. Plasmid, 64, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Lioy, V. S., Machon, C., Tabone, M., Gonzalez-Pastor, J. E., Daugelavicius, R., Ayora, S., et al. (2012). The zeta toxin induces a set of protective responses and dormancy. PLoS ONE, 7, e30282.

    Article  PubMed  CAS  Google Scholar 

  • Lock, R. A., Hansman, D., & Paton, J. C. (1992). Comparative efficacy of autolysin and pneumolysin as immunogens protecting mice against infection by Streptococcus pneumoniae. Microbial Pathogenesis, 12, 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Martner, A., Dahlgren, C., Paton, J. C., & Wold, A. E. (2008). Pneumolysin released during Streptococcus pneumoniae autolysis is a potent activator of intracellular oxygen radical production in neutrophils. Infection and Immunity, 76, 4079–4087.

    Article  PubMed  CAS  Google Scholar 

  • Martner, A., Skovbjerg, S., Paton, J. C., & Wold, A. E. (2009). Streptococcus pneumoniae autolysis prevents phagocytosis and production of phagocyte-activating cytokines. Infection and Immunity, 77, 3826–3837.

    Article  PubMed  CAS  Google Scholar 

  • Meinhart, A., Alings, C., Strater, N., Camacho, A. G., Alonso, J. C., & Saenger, W. (2001). Crystallization and preliminary X-ray diffraction studies of the εζ addiction system encoded by Streptococcus pyogenes plasmid pSM19035. Acta Crystallographica. Section D, Biological Crystallography, 57, 745–747.

    Article  PubMed  CAS  Google Scholar 

  • Meinhart, A., Alonso, J. C., Strater, N., & Saenger, W. (2003). Crystal structure of the plasmid maintenance system ε/ζ: Functional mechanism of toxin ζ and inactivation by ε 2 ζ 2 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 100, 1661–1666.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, T. J., Andrew, P. W., Saunders, F. K., Smith, A. N., & Boulnois, G. J. (1991). Complement activation and antibody binding by pneumolysin via a region of the toxin homologous to a human acute-phase protein. Molecular Microbiology, 5, 1883–1888.

    Article  PubMed  CAS  Google Scholar 

  • Murayama, K., Orth, P., de la Hoz, A. B., Alonso, J. C., & Saenger, W. (2001). Crystal structure of omega transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM19035 at 1.5 Å resolution. Journal of Molecular Biology, 314, 789–796.

    Article  PubMed  CAS  Google Scholar 

  • Mutschler, H., & Meinhart, A. (2011). Epsilon/zeta systems: Their role in resistance, virulence, and their potential for antibiotic development. Journal of Molecular Medicine, 89, 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Mutschler, H., Reinstein, J., & Meinhart, A. (2010). Assembly dynamics and stability of the pneumococcal epsilon zeta antitoxin toxin (PezAT) system from Streptococcus pneumoniae. Journal of Biological Chemistry, 285, 21797–21806.

    Article  PubMed  CAS  Google Scholar 

  • Mutschler, H., Gebhardt, M., Shoeman, R. L., & Meinhart, A. (2011). A novel mechanism of programmed cell death in bacteria by toxin–antitoxin systems corrupts peptidoglycan synthesis. PLoS Biology, 9, e1001033.

    Article  PubMed  CAS  Google Scholar 

  • Nau, R., & Eiffert, H. (2002). Modulation of release of proinflammatory bacterial compounds by antibacterials: Potential impact on course of inflammation and outcome in sepsis and meningitis. Clinical Microbiology Reviews, 15, 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Nowakowska, B., Kern-Zdanowicz, I., Zielenkiewicz, U., & Ceglowski, P. (2005). Characterization of Bacillus subtilis clones surviving overproduction of Zeta, a pSM19035 plasmid-encoded toxin. Acta Biochimica Polonica, 52, 99–107.

    PubMed  CAS  Google Scholar 

  • Overgaard, M., Borch, J., Jorgensen, M. G., & Gerdes, K. (2008). Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Molecular Microbiology, 69, 841–857.

    Article  PubMed  CAS  Google Scholar 

  • Pachulec, E., & van der Does, C. (2010). Conjugative plasmids of Neisseria gonorrhoeae. PLoS ONE, 5, e9962.

    Article  PubMed  Google Scholar 

  • Pinas, G. E., Cortes, P. R., Orio, A. G., & Echenique, J. (2008). Acidic stress induces autolysis by a CSP-independent ComE pathway in Streptococcus pneumoniae. Microbiology, 154, 1300–1308.

    Article  PubMed  CAS  Google Scholar 

  • Pratto, F., Cicek, A., Weihofen, W. A., Lurz, R., Saenger, W., & Alonso, J. C. (2008). Streptococcus pyogenes pSM19035 requires dynamic assembly of ATP-bound ParA and ParB on parS DNA during plasmid segregation. Nucleic Acids Research, 36, 3676–3689.

    Article  PubMed  CAS  Google Scholar 

  • Ramage, H. R., Connolly, L. E., & Cox, J. S. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genetics, 5, e1000767.

    Article  PubMed  Google Scholar 

  • Regev-Yochay, G., Trzcinski, K., Thompson, C. M., Lipsitch, M., & Malley, R. (2007). SpxB is a suicide gene of Streptococcus pneumoniae and confers a selective advantage in an in vivo competitive colonization model. Journal of Bacteriology, 189, 6532–6539.

    Article  PubMed  CAS  Google Scholar 

  • Rosvoll, T. C., Pedersen, T., Sletvold, H., Johnsen, P. J., Sollid, J. E., Simonsen, G. S., et al. (2010). PCR-based plasmid typing in Enterococcus faecium strains reveals widely distributed pRE25-, pRUM-, pIP501- and pHTbeta-related replicons associated with glycopeptide resistance and stabilizing toxin–antitoxin systems. FEMS Immunology and Medical Microbiology, 58, 254–268.

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger, D. J., Shoemaker, N. B., & Salyers, A. A. (2007). Possible origins of CTnBST, a conjugative transposon found recently in a human colonic Bacteroides strain. Applied and Environment Microbiology, 73, 4226–4233.

    Article  CAS  Google Scholar 

  • Schwarz, F. V., Perreten, V., & Teuber, M. (2001). Sequence of the 50-kb conjugative multiresistance plasmid pRE25 from Enterococcus faecalis RE25. Plasmid, 46, 170–187.

    Article  PubMed  CAS  Google Scholar 

  • Sletvold, H., Johnsen, P. J., Simonsen, G. S., Aasnaes, B., Sundsfjord, A., & Nielsen, K. M. (2007). Comparative DNA analysis of two vanA plasmids from Enterococcus faecium strains isolated from poultry and a poultry farmer in Norway. Antimicrobial Agents and Chemotherapy, 51, 736–739.

    Article  PubMed  CAS  Google Scholar 

  • Sletvold, H., Johnsen, P. J., Hamre, I., Simonsen, G. S., Sundsfjord, A., & Nielsen, K. M. (2008). Complete sequence of Enterococcus faecium pVEF3 and the detection of an omega-epsilon-zeta toxin–antitoxin module and an ABC transporter. Plasmid, 60, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Tettelin, H., Nelson, K. E., Paulsen, I. T., Eisen, J. A., Read, T. D., Peterson, S., et al. (2001). Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science, 293, 498–506.

    Article  PubMed  CAS  Google Scholar 

  • Van Melderen, L., & Saavedra De Bast, M. (2009). Bacterial toxin–antitoxin systems: More than selfish entities? PLoS Genetics, 5, e1000437.

    Article  PubMed  Google Scholar 

  • Wang, X., Kim, Y., Hong, S. H., Ma, Q., Brown, B. L., Pu, M., et al. (2011). Antitoxin MqsA helps mediate the bacterial general stress response. Nature Chemical Biology, 7, 359–366.

    Article  PubMed  CAS  Google Scholar 

  • Weihofen, W. A., Cicek, A., Pratto, F., Alonso, J. C., & Saenger, W. (2006). Structures of omega repressors bound to direct and inverted DNA repeats explain modulation of transcription. Nucleic Acids Research, 34, 1450–1458.

    Article  PubMed  CAS  Google Scholar 

  • Winther, K. S., & Gerdes, K. (2012). Regulation of enteric vapBC transcription: Induction by VapC toxin dimer-breaking. Nucleic Acids Research, 40, 4347–4357.

    Article  PubMed  CAS  Google Scholar 

  • Zielenkiewicz, U., & Ceglowski, P. (2001). Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochimica Polonica, 48, 1003–1023.

    PubMed  CAS  Google Scholar 

  • Zielenkiewicz, U., & Ceglowski, P. (2005). The toxin–antitoxin system of the streptococcal plasmid pSM19035. Journal of Bacteriology, 187, 6094–6105.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Meinhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mutschler, H., Meinhart, A. (2013). Type II Toxin-Antitoxin Loci: The Epsilon/zeta Family. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_12

Download citation

Publish with us

Policies and ethics