Skip to main content

Type II Toxin-Antitoxin Loci: The mazEF Family

  • Chapter
  • First Online:
Prokaryotic Toxin-Antitoxins

Abstract

The mazEF locus is one of the most extensively characterized toxin-antitoxin (TA) systems. MazF is an endoribonuclease that cleaves RNA at a specific sequence. MazF is conserved in most bacterial and some archaeal species. Since the discovery of MazF in Escherichia coli, a number of MazF homologues and other mRNA interferases with different mRNA cleavage specificities have been elucidated. Here we describe their unique biochemical features, the regulatory mechanisms of the MazF activity and presumed physiological roles of MazF in the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, S. I., Kirk, S. H., & Eisenstark, A. (1998). Thymine metabolism and thymineless death in prokaryotes and eukaryotes. Annual Review of Microbiology, 52, 591–625.

    PubMed  CAS  Google Scholar 

  • Ahnn, J., March, P. E., Takiff, H. E., & Inouye, M. (1986). A GTP-binding protein of Escherichia coli has homology to yeast RAS proteins. Proceedings of the National academy of Sciences of the United States of America, 83, 8849–8853.

    PubMed  CAS  Google Scholar 

  • Aizenman, E., Engelberg-Kulka, H., & Glaser, G. (1996). An Escherichia coli chromosomal “addiction module” regulated by guanosine 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proceedings of the National academy of Sciences of the United States of America, 93, 6059–6063.

    PubMed  CAS  Google Scholar 

  • Amitai, S., Kolodkin-Gal, I., Hananya-Meltabashi, M., Sacher, A., & Engelberg-Kulka, H. (2009). Escherichia coli MazF leads to the simultaneous selective synthesis of both “death proteins” and “survival proteins”. PLoS Genetics, 5, e1000390.

    PubMed  Google Scholar 

  • Basu, S., Pathak, S. K., Banerjee, A., Pathak, S., Bhattacharyya, A., Yang, Z., et al. (2007). Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha. Journal of Biological Chemistry, 282, 1039–1050.

    PubMed  CAS  Google Scholar 

  • Belitsky, M., Avshalom, H., Erental, A., Yelin, I., Kumar, S., London, N., et al. (2011). The Escherichia coli extracellular death factor (EDF) induces the endoribonucleolytic activities of the toxins MazF and ChpBK. Molecular Cell, 41, 625–635.

    PubMed  CAS  Google Scholar 

  • Berkhout, B., Silverman, R. H., & Jeang, K. T. (1989). Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell, 59, 273–282.

    Google Scholar 

  • Bravo, A., de Torrontegui, G., & Diaz, R. (1987). Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid. Molecular and General Genetics, 210, 101–110.

    PubMed  CAS  Google Scholar 

  • Brennan, M. J., & Delogu, G. (2002). The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends in Microbiology, 10, 246–249.

    PubMed  CAS  Google Scholar 

  • Briani, F., Deho, G., Forti, F., & Ghisotti, D. (2001). The plasmid status of satellite bacteriophage P4. Plasmid, 45, 1–17.

    PubMed  CAS  Google Scholar 

  • Brik, A., & Wong, C. H. (2003). HIV-1 protease: mechanism and drug discovery. Organic & Biomolecular Chemistry, 1, 5–14.

    CAS  Google Scholar 

  • Carrere-Kremer, S., Montpellier, C., Lorenzo, L., Brulin, B., Cocquerel, L., Belouzard, S., et al. (2004). Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. The Journal of biological chemistry, 279, 41384–41392.

    PubMed  CAS  Google Scholar 

  • Cesareni, G., Helmer-Citterich, M., & Castagnoli, L. (1991). Control of ColE1 plasmid replication by antisense RNA. Trends in Genetics, 7, 230–235.

    PubMed  CAS  Google Scholar 

  • Chono, H., Matsumoto, K., Tsuda, H., Saito, N., Lee, K., Kim, S., et al. (2011a). Acquisition of HIV-1 resistance in T lymphocytes using an ACA-specific E. coli mRNA interferase. Human Gene Therapy, 22, 35–43.

    PubMed  CAS  Google Scholar 

  • Chono, H., Saito, N., Tsuda, H., Shibata, H., Ageyama, N., Terao, K., et al. (2011b). In vivo safety and persistence of endoribonuclease gene-transduced CD4+ T cells in cynomolgus macaques for HIV-1 gene therapy model. PLoS ONE, 6, e23585.

    PubMed  CAS  Google Scholar 

  • Christensen, S. K., & Gerdes, K. (2003). RelE toxins from bacteria and archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Molecular Microbiology, 48, 1389–1400.

    PubMed  CAS  Google Scholar 

  • Christensen, S. K., Mikkelsen, M., Pedersen, K., & Gerdes, K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proceedings of the National academy of Sciences of the United States of America, 98, 14328–14333.

    PubMed  CAS  Google Scholar 

  • Christensen, S. K., Pedersen, K., Hansen, F. G., & Gerdes, K. (2003). Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. Journal of Molecular Biology, 332, 809–819.

    PubMed  CAS  Google Scholar 

  • Christensen-Dalsgaard, M., Jorgensen, M. G., & Gerdes, K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Molecular Microbiology, 75, 333–348.

    PubMed  CAS  Google Scholar 

  • Davies, B. W., Kohanski, M. A., Simmons, L. A., Winkler, J. A., Collins, J. J., & Walker, G. C. (2009). Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. Molecular Cell, 36, 845–860.

    PubMed  CAS  Google Scholar 

  • Davison, J. (1984). Mechanism of control of DNA replication and incompatibility in ColE1-type plasmids–a review. Gene, 28, 1–15.

    PubMed  CAS  Google Scholar 

  • de la Cueva-Mendez, G., Mills, A. D., Clay-Farrace, L., Diaz-Orejas, R., & Laskey, R. A. (2003). Regulatable killing of eukaryotic cells by the prokaryotic proteins Kid and Kis. EMBO Journal, 22, 246–251.

    PubMed  Google Scholar 

  • Denny, P. W., & Smith, D. F. (2004). Rafts and sphingolipid biosynthesis in the kinetoplastid parasitic protozoa. Molecular Microbiology, 53, 725–733.

    PubMed  CAS  Google Scholar 

  • Dheenadhayalan, V., Delogu, G., Sanguinetti, M., Fadda, G., & Brennan, M. J. (2006). Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo. Journal of Bacteriology, 188, 3721–3725.

    PubMed  CAS  Google Scholar 

  • Dukan, S., Farewell, A., Ballesteros, M., Taddei, F., Radman, M., & Nystrom, T. (2000). Protein oxidation in response to increased transcriptional or translational errors. Proceedings of the National academy of Sciences of the United States of America, 97, 5746–5749.

    PubMed  CAS  Google Scholar 

  • Engelberg-Kulka, H., & Glaser, G. (1999). Addiction modules and programmed cell death and antideath in bacterial cultures. Annual Review of Microbiology, 53, 43–70.

    PubMed  CAS  Google Scholar 

  • Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., & Hazan, R. (2004). Bacterial programmed cell death systems as targets for antibiotics. Trends in Microbiology, 12, 66–71.

    PubMed  CAS  Google Scholar 

  • Erental, A., Sharon, I., & Engelberg-Kulka, H. (2012). Two programmed cell death systems in Escherichia coli: An apoptotic-like death is inhibited by the mazEF-mediated death pathway. PLoS Biology, 10, e1001281.

    PubMed  CAS  Google Scholar 

  • Fonville, N. C., Bates, D., Hastings, P. J., Hanawalt, P. C., & Rosenberg, S. M. (2010). Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genetics, 6, e1000865.

    PubMed  Google Scholar 

  • Foote, B. S., Spooner, L. M., & Belliveau, P. P. (2011). Boceprevir: a protease inhibitor for the treatment of chronic hepatitis C. Annals of Pharmacotherapy, 45, 1085–1093.

    PubMed  CAS  Google Scholar 

  • Foti, J. J., Schienda, J., Sutera, V. A., Jr, & Lovett, S. T. (2005). A bacterial G protein-mediated response to replication arrest. Molecular Cell, 17, 549–560.

    PubMed  CAS  Google Scholar 

  • Freed, E. O. (1998). HIV-1 gag proteins: diverse functions in the virus life cycle. Virology, 251, 1–15.

    PubMed  CAS  Google Scholar 

  • Fu, Z., Donegan, N. P., Memmi, G., & Cheung, A. L. (2007). Characterization of MazFSa, an endoribonuclease from Staphylococcus aureus. Journal of Bacteriology, 189, 8871–8879.

    PubMed  CAS  Google Scholar 

  • Fu, Z., Tamber, S., Memmi, G., Donegan, N. P., & Cheung, A. L. (2009). Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage. Journal of Bacteriology, 191, 2051–2059.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Christensen, S. K., & Lobner-Olesen, A. (2005). Prokaryotic toxin-antitoxin stress response loci. Nature Reviews Microbiology, 3, 371–382.

    PubMed  CAS  Google Scholar 

  • Gey van Pittius, N. C., Sampson, S. L., Lee, H., Kim, Y., van Helden, P. D., & Warren, R. M. (2006). Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evolutionary Biology, 6, 95.

    PubMed  Google Scholar 

  • Ghosh, A. K., Chapsal, B. D., Parham, G. L., Steffey, M., Agniswamy, J., Wang, Y. F., et al. (2011). Design of HIV-1 protease inhibitors with C3-substituted hexahydrocyclopentafuranyl Urethanes as P2-ligands: synthesis, biological evaluation, and protein-ligand X-ray crystal structure. Journal of Medicinal Chemistry, 54, 5890–5901.

    PubMed  CAS  Google Scholar 

  • Godoy, V. G., Jarosz, D. F., Walker, F. L., Simmons, L. A., & Walker, G. C. (2006). Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO Journal, 25, 868–879.

    PubMed  CAS  Google Scholar 

  • Hayes, F. (2003). Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science, 301, 1496–1499.

    PubMed  CAS  Google Scholar 

  • Hazan, R., Sat, B., & Engelberg-Kulka, H. (2004). Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. Journal of Bacteriology, 186, 3663–3669.

    PubMed  CAS  Google Scholar 

  • Hong, J., Ahn, J. M., Kim, B. C., & Gu, M. B. (2009). Construction of a functional network for common DNA damage responses in Escherichia coli. Genomics, 93, 514–524.

    PubMed  CAS  Google Scholar 

  • Imlay, J. A., Chin, S. M., & Linn, S. (1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science, 240, 640–642.

    PubMed  CAS  Google Scholar 

  • Imlay, J. A., & Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166, 519–527.

    PubMed  CAS  Google Scholar 

  • Inouye, M. (1969). Unlinking of cell division from deoxyribonucleic acid replication in a temperature-sensitive deoxyribonucleic acid synthesis mutant of Escherichia coli. Journal of Bacteriology, 99, 842–850.

    PubMed  CAS  Google Scholar 

  • Inouye, M. (2006). The discovery of mRNA interferases: implication in bacterial physiology and application to biotechnology. Journal of Cellular Physiology, 209, 670–676.

    PubMed  CAS  Google Scholar 

  • Jorgensen, M. G., Pandey, D. P., Jaskolska, M., & Gerdes, K. (2009). HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea. Journal of Bacteriology, 191, 1191–1199.

    PubMed  CAS  Google Scholar 

  • Jung, Y. H., & Lee, Y. (1995). RNases in ColE1 DNA metabolism. Molecular Biology Reports, 22, 195–200.

    PubMed  CAS  Google Scholar 

  • Kamada, K., Hanaoka, F., & Burley, S. K. (2003). Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. Molecular Cell, 11, 875–884.

    PubMed  CAS  Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130, 797–810.

    PubMed  CAS  Google Scholar 

  • Kohanski, M. A., Dwyer, D. J., Wierzbowski, J., Cottarel, G., & Collins, J. J. (2008). Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell, 135, 679–690.

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal, I., & Engelberg-Kulka, H. (2008). The extracellular death factor: physiological and genetic factors influencing its production and response in Escherichia coli. Journal of Bacteriology, 190, 3169–3175.

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S., & Engelberg-Kulka, H. (2007). A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science, 318, 652–655.

    PubMed  CAS  Google Scholar 

  • Kolodkin-Gal, I., Sat, B., Keshet, A., & Engelberg-Kulka, H. (2008). The communication factor EDF and the toxin-antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biology, 6, e319.

    PubMed  Google Scholar 

  • Lanyi, J. K. (1974). Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Reviews, 38, 272–290.

    CAS  Google Scholar 

  • Li, G. Y., Zhang, Y., Chan, M. C., Mal, T. K., Hoeflich, K. P., Inouye, M., et al. (2006). Characterization of dual substrate binding sites in the homodimeric structure of Escherichia coli mRNA interferase MazF. Journal of Molecular Biology, 357, 139–150.

    PubMed  CAS  Google Scholar 

  • Li, X., Yagi, M., Morita, T., & Aiba, H. (2008). Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Molecular Microbiology, 68, 462–473.

    PubMed  CAS  Google Scholar 

  • Mao, L., Inoue, K., Tao, Y., Montelione, G. T., McDermott, A. E., & Inouye, M. (2011). Suppression of phospholipid biosynthesis by cerulenin in the condensed single-protein-production (cSPP) system. Journal of Biomolecular NMR, 49, 131–137.

    PubMed  CAS  Google Scholar 

  • Mao, L., Tang, Y., Vaiphei, S. T., Shimazu, T., Kim, S. G., Mani, R., et al. (2009). Production of membrane proteins for NMR studies using the condensed single protein (cSPP) production system. Journal of Structural and Functional Genomics, 10, 281–289.

    PubMed  Google Scholar 

  • March, P. E., Lerner, C. G., Ahnn, J., Cui, X., & Inouye, M. (1988). The Escherichia coli Ras-like protein (Era) has GTPase activity and is essential for cell growth. Oncogene, 2, 539–544.

    PubMed  CAS  Google Scholar 

  • Masuda, Y., Miyakawa, K., Nishimura, Y., & Ohtsubo, E. (1993). chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100. Journal of Bacteriology, 175, 6850–6856.

    PubMed  CAS  Google Scholar 

  • McHutchison, J. G., & Patel, K. (2002). Future therapy of hepatitis C. Hepatology, 36, S245–S252.

    PubMed  Google Scholar 

  • McVey, C. E., Amblar, M., Barbas, A., Cairrao, F., Coelho, R., Romao, C., et al. (2006). Expression, purification, crystallization and preliminary diffraction data characterization of Escherichia coli ribonuclease II (RNase II). Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 62, 684–687.

    Google Scholar 

  • Metzger, S., Dror, I. B., Aizenman, E., Schreiber, G., Toone, M., Friesen, J. D., et al. (1988). The nucleotide sequence and characterization of the relA gene of Escherichia coli. Journal of Biological Chemistry, 263, 15699–15704.

    PubMed  CAS  Google Scholar 

  • Mishra, K. C., de Chastellier, C., Narayana, Y., Bifani, P., Brown, A. K., Besra, G. S., et al. (2008). Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Infection and Immunity, 76, 127–140.

    PubMed  CAS  Google Scholar 

  • Munoz-Gomez, A. J., Santos-Sierra, S., Berzal-Herranz, A., Lemonnier, M., & Diaz-Orejas, R. (2004). Insights into the specificity of RNA cleavage by the Escherichia coli MazF toxin. FEBS Letters, 567, 316–320.

    PubMed  CAS  Google Scholar 

  • Nariya, H., & Inouye, M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell, 132, 55–66.

    PubMed  CAS  Google Scholar 

  • Park, J. H., Yamaguchi, Y., & Inouye, M. (2011). Bacillus subtilis MazF-bs (EndoA) is a UACAU-specific mRNA interferase. FEBS Lett.

    Google Scholar 

  • Park, J. H., Yamaguchi, Y., & Inouye, M. (2012). Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF Fused to a MazE Fragment with a Linker Cleavable by Specific Proteases. Applied and Environmental Microbiology, 78, 3794–3799.

    Google Scholar 

  • Pedersen, K., Zavialov, A. V., Pavlov, M. Y., Elf, J., Gerdes, K., & Ehrenberg, M. (2003). The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell, 112, 131–140.

    PubMed  CAS  Google Scholar 

  • Pellegrini, O., Mathy, N., Gogos, A., Shapiro, L., & Condon, C. (2005). The Bacillus subtilis ydcDE operon encodes an endoribonuclease of the MazF/PemK family and its inhibitor. Molecular Microbiology, 56, 1139–1148.

    PubMed  CAS  Google Scholar 

  • Ramage, H. R., Connolly, L. E., & Cox, J. S. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genetics, 5, e1000767.

    PubMed  Google Scholar 

  • Ruiz-Echevarria, M. J., Berzal-Herranz, A., Gerdes, K., & Diaz-Orejas, R. (1991). The kis and kid genes of the parD maintenance system of plasmid R1 form an operon that is autoregulated at the level of transcription by the co-ordinated action of the Kis and Kid proteins. Molecular Microbiology, 5, 2685–2693.

    PubMed  CAS  Google Scholar 

  • Ruiz-Echevarria, M. J., Gimenez-Gallego, G., Sabariegos-Jareno, R., & Diaz-Orejas, R. (1995). Kid, a small protein of the parD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. Journal of Molecular Biology, 247, 568–577.

    PubMed  CAS  Google Scholar 

  • Sat, B., Hazan, R., Fisher, T., Khaner, H., Glaser, G., & Engelberg-Kulka, H. (2001). Programmed cell death in Escherichia coli: some antibiotics can trigger mazEF lethality. Journal of Bacteriology, 183, 2041–2045.

    PubMed  CAS  Google Scholar 

  • Sat, B., Reches, M., & Engelberg-Kulka, H. (2003). The Escherichia coli mazEF suicide module mediates thymineless death. Journal of Bacteriology, 185, 1803–1807.

    PubMed  CAS  Google Scholar 

  • Schwartz, W. (1979). Microbial life in extreme environments. XII und 465 S., 15 Abb., 36 Tab., 1 Taf. (farbig). In D. J. KUSHNER (Ed.), Zeitschrift für allgemeine Mikrobiologie 19, (pp. 447–447). London: Academic Press. $ 19.60.

    Google Scholar 

  • Shafer, R. W., Rhee, S. Y., Pillay, D., Miller, V., Sandstrom, P., Schapiro, J. M., et al. (2007). HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. Aids, 21, 215–223.

    PubMed  CAS  Google Scholar 

  • Shao, Y., Harrison, E. M., Bi, D., Tai, C., He, X., Ou, H. Y., et al. (2011). TADB: A web-based resource for type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Research, 39, D606–D611.

    PubMed  Google Scholar 

  • Shapira, A., Shapira, S., Gal-Tanamy, M., Zemel, R., Tur-Kaspa, R., & Benhar, I. (2012). Removal of hepatitis C virus-infected cells by a zymogenized bacterial toxin. PLoS ONE, 7, e32320.

    PubMed  CAS  Google Scholar 

  • Shimazu, T., Degenhardt, K., Nur, E. K. A., Zhang, J., Yoshida, T., Zhang, Y., et al. (2007). NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Genes & Development, 21, 929–941.

    CAS  Google Scholar 

  • Singh, K. K., Dong, Y., Patibandla, S. A., McMurray, D. N., Arora, V. K., & Laal, S. (2005). Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during incipient and clinical tuberculosis. Infection and Immunity, 73, 5004–5014.

    PubMed  CAS  Google Scholar 

  • Stoeckenius, W. (1981). Walsby’s square bacterium: fine structure of an orthogonal procaryote. Journal of Bacteriology, 148, 352–360.

    PubMed  CAS  Google Scholar 

  • Sun, H., & Shi, W. (2001). Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. Journal of Bacteriology, 183, 4786–4795.

    PubMed  CAS  Google Scholar 

  • Sunohara, T., Jojima, K., Tagami, H., Inada, T., & Aiba, H. (2004a). Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. Journal of Biological Chemistry, 279, 15368–15375.

    PubMed  CAS  Google Scholar 

  • Sunohara, T., Jojima, K., Yamamoto, Y., Inada, T., & Aiba, H. (2004b). Nascent-peptide-mediated ribosome stalling at a stop codon induces mRNA cleavage resulting in nonstop mRNA that is recognized by tmRNA. RNA, 10, 378–386.

    PubMed  CAS  Google Scholar 

  • Suzuki, M., Roy, R., Zheng, H., Woychik, N., & Inouye, M. (2006). Bacterial bioreactors for high yield production of recombinant protein. Journal of Biological Chemistry, 281, 37559–37565.

    PubMed  CAS  Google Scholar 

  • Suzuki, M., Zhang, J., Liu, M., Woychik, N. A., & Inouye, M. (2005). Single protein production in living cells facilitated by an mRNA interferase. Molecular Cell, 18, 253–261.

    PubMed  CAS  Google Scholar 

  • Tomizawa, J. (1984). Control of ColE1 plasmid replication: the process of binding of RNA I to the primer transcript. Cell, 38, 861–870.

    PubMed  CAS  Google Scholar 

  • Tsuchimoto, S., Nishimura, Y., & Ohtsubo, E. (1992). The stable maintenance system pem of plasmid R100: degradation of PemI protein may allow PemK protein to inhibit cell growth. Journal of Bacteriology, 174, 4205–4211.

    PubMed  CAS  Google Scholar 

  • Tsuchimoto, S., Ohtsubo, H., & Ohtsubo, E. (1988). Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100. Journal of Bacteriology, 170, 1461–1466.

    PubMed  CAS  Google Scholar 

  • Ueki, T., & Inouye, S. (2003). Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proceedings of the National academy of Sciences of the United States of America, 100, 8782–8787.

    PubMed  CAS  Google Scholar 

  • Van Melderen, L., & Saavedra De Bast, M. (2009). Bacterial toxin-antitoxin systems: more than selfish entities? PLoS Genetics, 5, e1000437.

    PubMed  Google Scholar 

  • Vesper, O., Amitai, S., Belitsky, M., Byrgazov, K., Kaberdina, A. C., Engelberg-Kulka, H., et al. (2011). Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. Cell, 147, 147–157.

    PubMed  CAS  Google Scholar 

  • Walsby, A. E. (1980). A square bacterium. Nature, 283, 69–71.

    Google Scholar 

  • Xia, B., Ke, H., & Inouye, M. (2001). Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Molecular Microbiology, 40, 179–188.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., & Inouye, M. (2009). mRNA interferases, sequence-specific endoribonucleases from the toxin-antitoxin systems. Progress of Molecular Biology Translation Science, 85, 467–500.

    CAS  Google Scholar 

  • Yamaguchi, Y., & Inouye, M. (2011). Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Nature Reviews Microbiology, 9, 779–790.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Nariya, H., Park, J. H., & Inouye, M. (2012). Inhibition of specific gene expressions by protein-mediated mRNA interference. National Communications, 3, 607.

    Google Scholar 

  • Yamaguchi, Y., Park, J. H., & Inouye, M. (2011). Toxin-antitoxin systems in bacteria and archaea. Annual Review of Genetics, 45, 61–79.

    PubMed  CAS  Google Scholar 

  • Zhang, J., & Inouye, M. (2002). MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. Journal of Bacteriology, 184, 5323–5329.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, Y., & Inouye, M. (2003a). Characterization of the interactions within the mazEF addiction module of Escherichia coli. Journal of Biological Chemistry, 278, 32300–32306.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Zhang, Y., Zhu, L., Suzuki, M., & Inouye, M. (2004). Interference of mRNA function by sequence-specific endoribonuclease PemK. Journal of Biological Chemistry, 279, 20678–20684.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Zhang, J., Hara, H., Kato, I., & Inouye, M. (2005a). Insights into the mRNA cleavage mechanism by MazF, an mRNA interferase. Journal of Biological Chemistry, 280, 3143–3150.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Zhang, J., Hoeflich, K. P., Ikura, M., Qing, G., & Inouye, M. (2003b). MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Molecular Cell, 12, 913–923.

    PubMed  CAS  Google Scholar 

  • Zhang, Y., Zhu, L., Zhang, J., & Inouye, M. (2005b). Characterization of ChpBK, an mRNA interferase from Escherichia coli. Journal of Biological Chemistry, 280, 26080–26088.

    PubMed  CAS  Google Scholar 

  • Zhu, L., Inoue, K., Yoshizumi, S., Kobayashi, H., Zhang, Y., Ouyang, M., et al. (2009). Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. Journal of Bacteriology, 191, 3248–3255.

    PubMed  CAS  Google Scholar 

  • Zhu, L., Phadtare, S., Nariya, H., Ouyang, M., Husson, R. N., & Inouye, M. (2008). The mRNA interferases, MazF-mt3 and MazF-mt7 from Mycobacterium tuberculosis target unique pentad sequences in single-stranded RNA. Molecular Microbiology, 69, 559–569.

    PubMed  CAS  Google Scholar 

  • Zhu, L., Zhang, Y., Teh, J. S., Zhang, J., Connell, N., Rubin, H., et al. (2006). Characterization of mRNA interferases from Mycobacterium tuberculosis. Journal of Biological Chemistry, 281, 18638–18643.

    PubMed  CAS  Google Scholar 

  • Zhu, L., Sharp, J. D., Kobayashi, H., Woychik, N. A., & Inouye, M. (2010). Noncognate Mycobacterium tuberculosis toxin-antitoxins can physically and functionally interact. The Journal of Biological Chemistry, 285, 39732–39738.

    Google Scholar 

  • Zhang, X. Z., Yan, X., Cui, Z. L., Hong, Q., & Li, S. P. (2006). mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Research, 34, e71.

    Google Scholar 

Download references

Acknowledgments

We would like to dedicate this chapter for late Dr. Tsutomu Shimazu, who demonstrated for the first time the MazF toxicity in mammalian cells (Shimazu et al. 2007). We also thank to Dr. Vikas Nanda, Mr. Jung-Ho Park, and Ms. Sehrish Ajimal for their critical reading of this chapter. This work was supported by an NIH grant, 1RO1GM081567 and 3RO1GM081567-02S1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayori Inouye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamaguchi, Y., Inouye, M. (2013). Type II Toxin-Antitoxin Loci: The mazEF Family. In: Gerdes, K. (eds) Prokaryotic Toxin-Antitoxins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33253-1_7

Download citation

Publish with us

Policies and ethics