Skip to main content

A Forward Model of Mantle Convection with Evolving Continents and a Model of the Andean Subduction Orogen

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ‘12

Abstract

Some essential features of Andean orogenesis cannot be explained only by a dynamic regional model since there are essential influences across its vertical boundaries. A dynamic regional model of the Andes should be embedded in a 3-D spherical-shell model. Because of the energy distribution on the poloidal and toroidal parts of the creep velocity and because of geologically determined mass transport alongside the Andes, both models have to be three-dimensional. Furthermore, we developed a new viscosity profile of the mantle with very steep gradients at the lithospheric-asthenospheric boundary and at a depth of 410 and 660 km. Therefore, the challenges to the code Terra are now essentially larger. In the last 3 years we have resolved these problems in an international cooperation (see Sect. 2.2). Based on the new viscosity profile and on an improved Terra, we computed a new forward spherical-shell model (Walzer and Hendel, J Geophys Res submitted, 2012b). For this model, we derived also a new extended acoustic Grüneisen parameter, γ ax , new profiles of the thermal expansivity, α, and of the specific heat, c v , at constant volume as well as a solidus depending on both the pressure and the water abundance. These innovations are essential to incorporate a chemical-differentiation mechanism into the model. We arrived at rather realistic episodes of continental growth interrupted by magmatically quiet time spans distributed over the whole time axis. Nevertheless, the model shows a main magmatic event at the very beginning of the Earth’s evolution. Papers on the improvement of Terra (Köstler et al. Comput Geosci submitted, 2012; Müller and Köstler, Int J Numer Methods Eng submitted, 2012)have been written. We conceived a regional model of the Andean Sect. 3.2.1) with the same new viscosity profile. We want to investigate why there is flat-slab subduction in some segments of the Andes and why deformation of the crust and volcanism migrate eastward. The evolution of the abundances of incompatible elements indicate a cycle which was finished by a fast process, perhaps by a large-scale delamination of the lower plate, perhaps also by another type of delamination. In connection with another spherical-shell model (with prescribed plate boundaries), the regional model should numerically explain why a plateau-type orogen evolved at an oceanic-continental plate boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. W. Allmendinger, T. E. Jordan, S. M. Kay, and B. L. Isacks. The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet. Sci., 25: 139–174, 1997.

    Article  Google Scholar 

  2. P. Alvarado, M. Pardo, H. Gilbert, S. Miranda, M. Anderson, M. Saez, and S. Beck. Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina. In S. M. Kay and V. A. Ramos, editors, Backbone of the Americas: Shallow subduction, Plateau Uplift, and Ridge and Terrane Collision, pages 261–278. Geol. Soc. Am., 2009.

    Google Scholar 

  3. M. L. Anderson, G. Zandt, E. Triep, M. Fouch, and S. Beck. Anisotropy and mantle flow in the Chile-Argentina subduction zone from shear wave splitting analysis. Geophys. Res. Lett, 31: L23608, 2004. doi: 10.1029/2004GL020906.

    Article  Google Scholar 

  4. C. Arriagada, P. Roperch, C. Mpodozis, and P. R. Cobbold. Paleogene building of the Bolivian orocline: Tectonic restoration of the central Andes in 2-D map view. Tectonics, 27: 1–29, 2008. doi: 10.1029/2008TC002269.

    Article  Google Scholar 

  5. J. B. Barnes and T. A. Ehlers. End member models for Andean Plateau uplift. Earth Science Reviews, 97: 105–132, 2009.

    Article  Google Scholar 

  6. J. R. Baumgardner and P. O. Frederickson. Icosahedral discretization of the two-sphere. SIAM J. Numer. Anal., 22: 1107–1115, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. W. Becker. Azimuthal seismic anisotropy constrains net rotation of the lithosphere. Geophys. Res. Lett., 35: L05303, 2008. doi: 10.1029/2007GL032928.

    Article  Google Scholar 

  8. T. W. Becker and C. Faccenna. A review of the role of subduction dynamics for regional and global plate motions. In S. Lallemand and F. Funiciello, editors, Subduction Zone Geodynamics, pages 3–34. Springer, 2009. doi: 10.1007/978-3-540-87974-9.

  9. J. Boyden, R. D. Müller, M. Gurnis, T. Torsvik, J. Clark, M. Turner, H. Ivey-Law, R. Watson, and J. S. Cannon. Next-generation plate-tectonic reconstructions using GPlates. In G. R. Keller and C. Baru, editors, Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, pages 95–113. Cambridge Univ. Press, 2011.

    Google Scholar 

  10. R. W. Carlson, D. G. Pearson, and D. E. James. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys., 43: RG1001, 24 pp., 2005. doi: 10.1029/2004RG000156.

    Google Scholar 

  11. J. P. Davidson and R. J. Arculus. The significance of Phanerozoic arc magmatism in generating continental crust. In M. Brown and T. Rushmer, editors, Evolution and Differentiation of the Continental Crust, pages 135–172. Cambridge Univ. Press, Cambridge, UK, 2006.

    Google Scholar 

  12. J. H. Davies and D. R. Davies. Earth’s surface heat flux. Solid Earth, 1: 5–24, 2010.

    Article  Google Scholar 

  13. P. G. DeCelles, M. N. Ducea, P. Kapp, and G. Zandt. Cyclicity in Cordilleran orogenic systems. Nature Geosci., 2: 251–257, 2009. doi: 10.1038/NGEO469.

    Article  Google Scholar 

  14. C. DeMets, R. Gordon, D. Argus, and S. Stein. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys. Res. Lett., 21: 2191–2194, 1994.

    Article  Google Scholar 

  15. C. Dohrmann and P. Bochev. A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Num. Meth. Fluids, 46: 183–201, 2004.

    Article  MathSciNet  Google Scholar 

  16. H. Ege. Exhumations-und Hebungsgeschichte der zentralen Anden in Südbolivien (21  S) durch Spaltspur-Thermochronologie an Apatit. PhD thesis, Freie Univ. Berlin, 2004.

    Google Scholar 

  17. K. Elger, O. Oncken, and J. Glodny. Plateau-style accumulation of deformation: Southern Altiplano. Tectonics, 24: TC4020, 2005. doi: 10.1029/2004TC001675.

    Google Scholar 

  18. K. M. Fischer, H. A. Ford, D. L. Abt, and C. A. Rychert. The lithosphere-asthenosphere boundary. Annu. Rev. Earth Planet. Sci., 38: 551–575, 2010.

    Article  Google Scholar 

  19. Y. Furukawa. Convergence of aqueous fluid at the corner of the mantle wedge: Implications for a generation mechanism of deep low-frequency earthquakes. Tectonophysics, 469: 85–92, 2009.

    Article  Google Scholar 

  20. C. W. Gable, R. J. O’Connell, and B. J. Travis. Convection in three dimensions with surface plates: Generation of toroidal flow. J. Geophys. Res., 96: 8391–8405, 1991.

    Article  Google Scholar 

  21. J. Ganguly, A. M. Freed, and S. K. Saxena. Density profiles of oceanic slabs and surrounding mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. Phys. Earth Planet. Int., 172: 257–267, 2009.

    Article  Google Scholar 

  22. K.-D. Gottschaldt, U. Walzer, R. Hendel, D. R. Stegman, J. R. Baumgardner, and H.-B. Mühlhaus. Stirring in 3-D spherical models of convection in the Earth’s mantle. Philosophical Magazine, 86: 3175–3204, 2006.

    Article  Google Scholar 

  23. D. H. Green and T. J. Falloon. Pyrolite: a Ringwood concept and its current expression. In I. Jackson, editor, The Earth’s Mantle. Composition, Structure and Evolution, pages 311–378. Cambridge Univ. Press, Cambridge, UK, 1998.

    Google Scholar 

  24. A. E. Gripp and R. G. Gordon. Young tracks of hotspots and current plate velocities. Geophys. J. Int., 150: 321–361, 2002.

    Article  Google Scholar 

  25. S. Guillot, K. Hattori, P. Agard, S. Schwartz, and O. Vidal. Exhumation processes in oceanic and continental subduction contexts: a review. In S. Lallemand and F. Funiciello, editors, Subduction Zone Geodynamics, pages 175–205. Springer, 2009. doi: 10.1007/978-3-540-87974-9.

  26. M. Gurnis, M. Turner, L. DiCaprio, S. Spasojević, R. D. Müller, J. Boyden, M. Seton, V. C. Manea, and D. J. Bower. Plate tectonic reconstructions with continuously closing plates. Computers & Geosciences, 38: 35–42, 2012.

    Article  Google Scholar 

  27. M. A. Gutscher. Andean subduction styles and their effect on thermal structure and interplate coupling. J. South Amer. Earth Sci., 15: 3–10, 2002.

    Article  Google Scholar 

  28. M. A. Gutscher, W. Spakman, H. Bijwaard, and E. Engdahl. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics, 19: 814–833, 2000.

    Article  MATH  Google Scholar 

  29. M. Haschke, A. Günther, D. Melnick, H. Echtler, K. Reutter, E. Scheuber, and O. Oncken. Central and southern Andean tectonic evolution inferred from arc magmatism. In O. Oncken et al., editors, The Andes, pages 337–353. Springer, Berlin, 2006.

    Google Scholar 

  30. A. Heuret and S. Lallemand. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Int., 149: 31–51, 2005.

    Article  Google Scholar 

  31. D. Hindle and J. Kley. Displacements, strains and rotations in the Central Andean plate boundary zone. In S. Stein and J. T. Freymuller, editors, Plate boundary zones, Geodynamics Series 30, pages 135–144. AGU, Washington, D. C., 2002.

    Chapter  Google Scholar 

  32. D. Hindle, J. Kley, E. Klosko, S. Stein, T. Dixon, and E. Norabuena. Consistency of geologic and geodetic displacements during Andean orogenesis. Geophys. Res. Lett., 29: 1188, 2002. doi: 10.1029/2001GL013757.

    Article  Google Scholar 

  33. D. Hindle, J. Kley, O. Oncken, and S. Sobolev. Crustal balance and crustal flux from shortening estimates in the Central Andes. Earth Planet. Sci. Lett., 230: 113–124, 2005.

    Article  Google Scholar 

  34. A. W. Hofmann. Sampling mantle heterogeneity through oceanic basalts: Isotopes and trace elements. In R. W. Carlson, editor, Treatise on Geochemistry, Vol.2: The Mantle and the Core, pages 61–101. Elsevier, Amsterdam, 2003.

    Google Scholar 

  35. E. Humphreys. Relation of flat subduction to magmatism and deformation in the western United States. In S. M. Kay and V. A. Ramos, editors, Backbone of the Americas: Shallow subduction, Plateau Uplift, and Ridge and Terrane Collision, pages 85–98. Geol. Soc. Am., 2009.

    Google Scholar 

  36. S. M. Kay and J. M. Abbruzzi. Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30S and 32S. Tectonophysics, 259 (1–3): 15–28, 1996.

    Article  Google Scholar 

  37. S. M. Kay and B. L. Coira. Shallowing and steepening subduction zones, continental lithospheric loss, magmatism, and crustalflow under the Central Andean Altiplano-Puna Plateau. In S. M. Kay and V. A. Ramos, editors, Backbone of the Americas: Shallow subduction, Plateau Uplift, and Ridge and Terrane Collision, pages 229–259. Geol. Soc. Am., 2009.

    Google Scholar 

  38. S. M. Kay and C. Mpodozis. Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today, 11 (3): 4–9, 2001.

    Article  Google Scholar 

  39. S. M. Kay, C. Mpodozis, and B. Coira. Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22 degrees to 33 degrees S latitude). In B. J. Skinner, editor, Geology and Ore Deposits of the Central Andes. Soc. Econom.Geol. Spec. Pub. 7, pages 27–59. 1998.

    Google Scholar 

  40. Kley. Der Übergang vom Subandin zur Ostkordillere in Südbolivien (21 15–22 S): Geologische Struktur und Kinematik. Berliner geowiss. Abh. (A), 156: 1–88, 1993.

    Google Scholar 

  41. J. Kley. Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics, 15 (4): 763–775, 1996.

    Article  Google Scholar 

  42. J. Kley. Structural styles of foreland deformation in the Andes. Z. dt. geol. Ges., 149: 13–26, 1998.

    Google Scholar 

  43. J. Kley. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. South Amer. Earth Sci., 12: 221–235, 1999.

    Article  Google Scholar 

  44. J. Kley and C. R. Monaldi. Tectonic shortening and crustal thickness in the Central Andes: How good is the correlation? Geology, 26: 723–726, 1998.

    Article  Google Scholar 

  45. J. Kley and C. R. Monaldi. Estructura de las Sierras Subandinas y del Sistema de Santa Bárbara. In G. González Bonorino, R. Omarini, and J. Viramonte, editors, Geología del Noroeste Argentino, volume 1, pages 415–425. Salta, 1999.

    Google Scholar 

  46. J. Kley and C. R. Monaldi. Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21: 1061, 2002. doi: 10.1029/2002TC902003.

    Article  Google Scholar 

  47. J. Kley and M. Reinhardt. Geothermal and tectonic evolution of the Eastern Cordillera and the Subandean Ranges of southern Bolivia. In K.-J. Reutter, E. Scheuber, and P. J. Wigger, editors, Tectonics of the southern Central Andes, pages 155–170. Springer, Berlin, 1994.

    Chapter  Google Scholar 

  48. J. Kley and T. Vietor. Subduction and mountain building in the central Andes. In T. Dixon and J. Moore, editors, The Seismogenic Zone of Subduction Thrust Faults, volume 2 of MARGINS Theoretical and Experimental Earth Science Series, pages 624–659. Columbia University Press, 2007.

    Google Scholar 

  49. J. Kley, J. Müller, S. Tawackoli, V. Jacobshagen, and E. Manutsoglu. Pre-Andean and Andean-age deformation in the eastern Cordillera of southern Bolivia. J. South Amer. Earth Sci., 10 (1): 1–19, 1997.

    Article  Google Scholar 

  50. J. Kley, C. R. Monaldi, and J. A. Salfity. Along-strike segmentation of the Andean foreland: Causes and consequences. Tectonophysics, 301: 75–94, 1999.

    Article  Google Scholar 

  51. J. Kley, E. A. Rossello, C. R. Monaldi, and B. Habighorst. Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, Northwest Argentina. Tectonophysics, 399 (1–4): 155–172, 2005.

    Article  Google Scholar 

  52. E. R. Klosko, S. Stein, D. Hindle, J. Kley, E. Norabuena, T. Dixon, and M. Liu. Comparison of GPS, seismological, and geological observations of Andean mountain building. In S. Stein and J. T. Freymuller, editors, Plate boundary zones, Geodynamics Series 30, pages 123–133. AGU, Washington, D. C., 2002.

    Chapter  Google Scholar 

  53. E. A. Kneller and P. E. van Keken. Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature, 450: 1222–1225, 2007. doi: 10.1038/nature06429.

    Article  Google Scholar 

  54. C. Köstler. Iterative solvers for modeling mantle convection with strongly varying viscosity. PhD thesis, Friedrich-Schiller-Univ. Jena, http://www.igw.uni-jena.de/geodyn, 2011.

  55. C. Köstler, M. Müller, U. Walzer, and J. Baumgardner. Krylov solvers and preconditioners for variable-viscosity convection models. Comp. Geosci., submitted, 2012.

    Google Scholar 

  56. C. Kreemer, W. Holt, and A. Haines. An integrated global model of present-day plate motions and plate boundary deformation. Geophys. J. Int., 154: 8–34, 2003.

    Article  Google Scholar 

  57. N. Kukowski and O. Oncken. Subduction erosion - the “normal” mode of fore-arc material transfer along the Chilean margin? In O. Oncken et al., editors, The Andes, pages 217–236. Springer, Berlin, 2006.

    Google Scholar 

  58. S. Lamb and P. Davis. Cenozoic climate change as a possible cause for the rise of the Andes. Nature, 425: 792–797, 2003.

    Article  Google Scholar 

  59. Z. X. Li and X. H. Li. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35 (2): 179–182, 2007. doi: 10.1130/G23193A.1.

    Article  Google Scholar 

  60. K. Litasov and E. Ohtani. Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys. Earth Planet. Int., 134: 105–127, 2002.

    Article  Google Scholar 

  61. K. D. Litasov. Physicochemical conditions for melting in the Earth’s mantle containing a C-O-H fluid (from experimental data). Russian Geology and Geophysics, 52: 475–492, 2011.

    Article  Google Scholar 

  62. M. D. Long and T. W. Becker. Mantle dynamics and seismic anisotropy. Earth Planet. Sci. Lett., 297: 341–354, 2010.

    Article  Google Scholar 

  63. B. D. Marsh. Magmatism, magma, and magma chambers. In G. Schubert, editor, Treatise on Geophysics, volume 6, pages 276–333. Elsevier, 2007.

    Google Scholar 

  64. F. Michaud, C. Witt, and J. Y. Royer. Influence of the subduction of the Carnegie volcanic ridge on Ecuadorian geology: Reality and fiction. In S. M. Kay and V. A. Ramos, editors, Backbone of the Americas: Shallow subduction, Plateau Uplift, and Ridge and Terrane Collision, pages 217–228. Geol. Soc. Am., 2009.

    Google Scholar 

  65. J. X. Mitrovica and A. M. Forte. A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth Planet. Sci. Lett., 225 (1): 177–189, 2004.

    Article  Google Scholar 

  66. P. Molnar and T. Atwater. Interarc spreading and Cordilleran tectonics as alternates related to the age of subducted oceanic lithosphere. Earth Planet. Sci. Lett., 41: 330–340, 1978.

    Article  Google Scholar 

  67. C. R. Monaldi, J. A. Salfity, and J. Kley. Preserved extensional structures in an inverted Cretaceous rift basin, northwestern Argentina: Outcrop examples and implications for fault reactivation. Tectonics, 27: C1011, 2008. doi: 10.1029/2006TC001993.

    Article  Google Scholar 

  68. M. Müller. Towards a robust Terra code. PhD thesis, Friedrich-Schiller-Univ. Jena, http://www.igw.uni-jena.de/geodyn, 2008.

  69. M. Müller and C. Köstler. Stabilization of the 3-D spherical convection code Terra. Int. Jour. Num. Meth. Engng., submitted, 2012.

    Google Scholar 

  70. R. J. O’Connell, C. W. Gable, and B. H. Hager. Toroidal-poloidal partitioning of lithospheric plate motions. In R. Sabadini and other, editors, Glacial Isostasy, Sea-Level and Mantle Rheology, pages 535–551. Kluwer, Norwell, MA, 1991.

    Google Scholar 

  71. O. Oncken, D. Hindle, J. Kley, K. Elger, P. Victor, and K. Schemmann. Deformation of the central Andean upper plate system - facts, fiction, and constraints for plateau models. In O. Oncken et al., editors, The Andes, pages 3–27. Springer, Berlin, 2006.

    Google Scholar 

  72. C. O’Neill, D. Müller, and B. Steinberger. On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochem. Geophys. Geosys., 6: Q04003, 2005. doi: 10.1029/2004GC000784.

    Article  Google Scholar 

  73. P. Pilz. Ein neues magmatisch-tektonisches Modell zur Asthenosphärendynamik im Bereich der zentralandinen Subduktionszone Südamerikas. PhD thesis, Universität Potsdam, 2008.

    Google Scholar 

  74. J. Pindell and L. Kennan. Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: An update. Geol. Soc. London, 328: 1–55, 2009.

    Article  Google Scholar 

  75. V. Ramos, E. Cristallini, and D. Pérez. The Pampean flat-slab of the Central Andes. J. South Amer. Earth Sci., 15: 59–78, 2002.

    Article  Google Scholar 

  76. V. A. Ramos. Anatomy and global context of the Andes: Main geologic features and the Andean orogenic cycle. In S. M. Kay and V. A. Ramos, editors, Backbone of the Americas: Shallow subduction, Plateau Uplift, and Ridge and Terrane Collision, pages 31–65. Geol. Soc. Am., 2009.

    Google Scholar 

  77. V. A. Ramos and A. Folguera. Andean flat-slab subduction through time. In B. Murphy et al., editors, Ancient Orogens and Modern Analogues, pages 31–54. Geol. Soc. London, 2009.

    Google Scholar 

  78. Y. Ricard, C. Doglioni, and R. Sabadini. Differential rotation between lithosphere and mantle: A consequence of lateral mantle viscosity variations. J. Geophys. Res., 96: 8407–8415, 1991.

    Article  Google Scholar 

  79. G. Rosenbaum, D. Giles, M. Saxon, P. G. Betts, R. F. Weinberg, and C. Duboz. Subduction of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in Peru. Earth Planet. Sci. Lett., 239: 18–32, 2005.

    Article  Google Scholar 

  80. L. H. Rüpke, J. Phipps Morgan, M. Hort, and J. A. D. Connolly. Serpentine and the subduction zone water cycle. Earth Planet. Sci. Lett., 223: 17–34, 2004.

    Article  Google Scholar 

  81. W. P. Schellart. Kinematics of subduction and subduction-induced flow in the upper mantle. J. Geophys. Res., 109: B07401, 2004. doi: 10.1029/2004JB002970.

    Article  Google Scholar 

  82. W. P. Schellart and N. Rawlinson. Convergent plate margin dynamics: New perspectives from structural geology, geophysics and geodynamic modelling. Tectonophysics, 483: 4–19, 2010.

    Article  Google Scholar 

  83. M. Sébrier and P. Soler. Tectonics and magmatism in the Peruvian Andes from late Oligocene time to the present. In R. S. Harmon and C. W. Rapela, editors, Andean Magmatism and its Tectonic Setting, volume 265 of Geol. Soc. Am. Spec. Paper, pages 259–278. Geol. Soc. of America, Boulder, Col., 1991.

    Google Scholar 

  84. S. Sobolev, A. Babeyko, I. Koulakov, and O. Oncken. Numerical study of weakening processes in the central Andean back-arc. In O. Oncken et al., editors, The Andes, pages 513–535. Springer, Berlin, 2006.

    Google Scholar 

  85. S. V. Sobolev and A. Y. Babeyko. What drives orogeny in the Andes? Geology, 33 (8): 617–620, 2005.

    Article  Google Scholar 

  86. D. Stegman, J. Freeman, W. Schellart, L. Moresi, and D. May. Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback. Geochem. Geophys. Geosys., 7: Q03012, 2006. doi: 10.1029/2005GC001056.

    Article  Google Scholar 

  87. B. Steinberger and R. J. O’Connell. Advection of plumes in mantle flow: Implications for hotspot motion, mantle viscosity and plume distribution. Geophys. J. Int., 132: 412–434, 1998.

    Article  Google Scholar 

  88. B. Steinberger, R. Sutherland, and R. J. O’Connell. Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature, 430: 167–173, 2004.

    Article  Google Scholar 

  89. A. Stracke, A. W. Hofmann, and S. R. Hart. FOZO, HIMU and the rest of the mantle zoo. Geochem. Geophys. Geosys., 6: Q05007, 2005. doi: 10.1029/2004GC000824.

    Article  Google Scholar 

  90. P. J. Tackley. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Int., 171: 7–18, 2008.

    Article  Google Scholar 

  91. Y. Tamura, Y. Tatsumi, D. Zhao, Y. Kido, and H. Shukuno. Hot fingers in the mantle wedge: New insights into magma genesis in subduction zones. Earth Planet. Sci. Lett., 197: 105 – 116, 2002.

    Article  Google Scholar 

  92. T. Vietor and H. Echtler. Episodic Neogene southward growth of the Andean subduction orogen between 30 ∘  S and 40 ∘  S - Plate motions, mantle flow, climate, and upper-plate structure. In O. Oncken et al., editors, The Andes, pages 375–400. Springer, Berlin, 2006.

    Google Scholar 

  93. U. Walzer and R. Hendel. Time-dependent thermal convection, mantle differentiation, and continental crust growth. Geophys. J. Int., 130: 303–325, 1997a.

    Article  Google Scholar 

  94. U. Walzer and R. Hendel. Tectonic episodicity and convective feedback mechanisms. Phys. Earth Planet. Int., 100: 167–188, 1997b.

    Article  Google Scholar 

  95. U. Walzer and R. Hendel. A new convection-fractionation model for the evolution of the principal geochemical reservoirs of the Earth’s mantle. Phys. Earth Planet. Int., 112: 211–256, 1999.

    Article  Google Scholar 

  96. U. Walzer and R. Hendel. A new convection-fractionation model for the evolution of the principal geochemical reservoirs of the Earth’s mantle. EOS Transactions, 80 (46): F1171, 2000.

    Google Scholar 

  97. U. Walzer and R. Hendel. Mantle convection and evolution with growing continents. J. Geophys. Res., 113: B09405, 2008. doi: 10.1029/2007JB005459.

    Article  Google Scholar 

  98. U. Walzer and R. Hendel. Predictability of Rayleigh-number and continental-growth evolution of a dynamic model of the Earth’s mantle. In S. Wagner, M. Steinmetz, A. Bode, and M. Brehm, editors, High Perf. Comp. Sci. Engng. ’07, pages 585–600. Springer, Berlin, 2009.

    Google Scholar 

  99. U. Walzer and R. Hendel. A geodynamic model of the evolution of the Earth’s chemical mantle reservoirs. In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Perf. Comp. Sci. Engng. ’10, pages 573–592. Springer, Berlin, 2011.

    Google Scholar 

  100. U. Walzer and R. Hendel. Silicate Earth differentiation, 3-D spherical-shell mantle convection, and evolution of continents. Earth Planet. Sci. Lett., submitted, 2012a.

    Google Scholar 

  101. U. Walzer and R. Hendel. Real episodic growth of continental crust or artefact of preservation? A 3-D geodynamic model. J. Geophys. Res., submitted, 2012b.

    Google Scholar 

  102. U. Walzer, R. Hendel, and J. Baumgardner. Variation of non-dimensional numbers and a thermal evolution model of the Earth’s mantle. In E. Krause and W. Jäger, editors, High Perf. Comp. Sci. Engng. ’02, pages 89–103. Berlin, 2003.

    Google Scholar 

  103. U. Walzer, R. Hendel, and J. Baumgardner. Viscosity stratification and a 3D compressible spherical shell model of mantle evolution. In E. Krause, W. Jäger, and M. Resch, editors, High Perf. Comp. Sci. Engng. ’03, pages 27–67. Springer, Berlin, 2004a.

    Google Scholar 

  104. U. Walzer, R. Hendel, and J. Baumgardner. The effects of a variation of the radial viscosity profile on mantle evolution. Tectonophysics, 384: 55–90, 2004b.

    Article  Google Scholar 

  105. U. Walzer, R. Hendel, and J. Baumgardner. Generation of plate-tectonic behavior and a new viscosity profile of the Earth’s mantle. In D. Wolf, G. Münster, and M. Kremer, editors, NIC Symposium, volume 20 of NIC Series, pages 419–428, Jülich, 2004c. Springer.

    Google Scholar 

  106. U. Walzer, R. Hendel, and J. Baumgardner. Toward a thermochemical model of the evolution of the Earth’s mantle. In E. Krause, W. Jäger, and M. Resch, editors, High Perf. Comp. Sci. Engng. ’04, pages 395–454. Springer, Berlin, 2005.

    Google Scholar 

  107. U. Walzer, R. Hendel, and J. Baumgardner. Plateness of the oceanic lithosphere and the thermal evolution of the Earth’s mantle. In W. E. Nagel, W. Jäger, and M. Resch, editors, High Perf. Comp. Sci. Engng. ’05, pages 289–304. Springer, Berlin, 2006.

    Google Scholar 

  108. U. Walzer, R. Hendel, and J. Baumgardner. Continental growth and thermal convection in the Earth’s mantle. In W. E. Nagel, W. Jäger, and M. Resch, editors, High Perf. Comp. Sci. Engng. ’06, pages 473–497. Springer, Berlin, 2007.

    Google Scholar 

  109. U. Walzer, R. Hendel, and J. Baumgardner. Whole-mantle convection, continent generation, and preservation of geochemical heterogeneity. In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Perf. Comp. Sci. Engng. ’07, pages 603–645. Springer, Berlin, 2008.

    Google Scholar 

  110. U. Walzer, R. Hendel, C. Köstler, and J. Kley. Andean Orogeny and Plate Generation. In W. E. Nagel, D. B. Kröner, and M. M. Resch, editors, High Perf. Comp. Sci. Engng. ’08, pages 559–583. Springer, Berlin, 2009.

    Google Scholar 

  111. B. J. Wood. The effect of H2O on the 410-kilometer seismic discontinuity. Science, 268: 74–76, 1995.

    Article  Google Scholar 

  112. B. J. Wood and A. Corgne. Mineralogy of the Earth: Trace elements and hydrogen in the Earth’s transition zone and lower mantle. In G. Schubert, editor, Treatise on Geophysics, volume 2, pages 63–89. Elsevier, 2007.

    Google Scholar 

  113. D. Yamazaki and S.-I. Karato. Some mineral physics constraints on the rheology and geothermal structure of the Earth’s lower mantle. Am. Min., 86: 385–391, 2001.

    Google Scholar 

  114. W.-S. Yang and J. R. Baumgardner. A matrix-dependent transfer multigrid method for strongly variable viscosity infinite Prandtl number thermal convection. Geophys. Astrophys. Fluid Dyn., 92: 151–195, 2000.

    Article  MathSciNet  Google Scholar 

  115. A. Yoneda, M. Osako, and E. Ito. Heat capacity measurement under high pressure: A finite element method assessment. Phys. Earth Planet. Int., 174: 309–314, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the stimulating discussions with J. Baumgardner, H.-P. Bunge, P. Bollada, H. Davies, R. Davies and M. Mohr in the group of Terra developers. We thank the Steinbuch Center for Computing, Karlsruhe, for the supply of computational time under grant sphshell. This work was partly supported by the Deutsche Forschungsgemeinschaft under grant KL 495/16-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Walzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walzer, U., Hendel, R., Köstler, C., Müller, M., Kley, J., Viereck-Götte, L. (2013). A Forward Model of Mantle Convection with Evolving Continents and a Model of the Andean Subduction Orogen. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ‘12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33374-3_35

Download citation

Publish with us

Policies and ethics