Skip to main content

Time Series Analysis for Heavy-Tailed Processes

  • Chapter
Modelling Extremal Events

Part of the book series: Applications of Mathematics ((SMAP,volume 33))

  • 4457 Accesses

Abstract

In this chapter we present some recent research on time series with large fluctuations, relevant for many financial time series. We approach the problem starting from classical time series analysis presented in such a way that many standard results can also be used in the heavy-tailed case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments

  1. Anderson, T.W. (1971) The Statistical Analysis of Time Series. Wiley, New York. [378]

    Google Scholar 

  2. Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden—Day, San Francisco. [378, 398]

    Google Scholar 

  3. Brillinger, D.R. (1981) Time Series Analysis: Data Analysis and Theory. Holt, Rinehart Winston, New York. [378]

    Google Scholar 

  4. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  5. Brockwell, P.J. and Davis, R.A. (1996) Introduction to Time Series and Forecasting. Springer, New York. [371, 378]

    Google Scholar 

  6. Chatfield, C. (1984) The Analysis of Time Series: An Introduction, 3rd edition. Chapman and Hall, London. [378]

    Google Scholar 

  7. Fuller, W.A. (1976) Introduction to Statistical Time Series. Wiley, New York. [378]

    Google Scholar 

  8. Hamilton, J.D. (1994) Time Series Analysis. Princeton University Press, Princeton. [378]

    Google Scholar 

  9. Hannan, E.J. (1970) Multiple Time Series. Wiley, New York. [378, 399]

    Google Scholar 

  10. Priestley, M.B. (1981) Spectral Analysis and Time Series, vols. I and II. Academic Press, New York. [378, 392–393]

    Google Scholar 

  11. Rosenblatt, M. (1985) Stationary Sequences and Random Fields. Birkhäuser, Boston. [378]

    Google Scholar 

  12. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  13. Samorodnitsky, G. and Taqqu, M.S. (1994) Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance. Chapman and Hall, London. [81, 96, 380, 521–550]

    Google Scholar 

  14. Klüppelberg, C. and Mikosch, T. (1996) Self-normalised and randomly centred spectral estimates. In: Heyde, C.C., Prokhorov, Yu.V., Pyke, R. and Rachev, S.T. (Eds.) Proceedings of the Athens International Conference on Applied Probability and Time Series, vol. 2: Time Series, pp. 259–271. Springer, Berlin. [380]

    Google Scholar 

  15. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  16. Davis, R.A. and Resnick, S.I. (1985) Limit theory for moving averages of random variables with regularly varying tail probabilities. Ann. Probab. 13, 179–195. [265, 281, 385]

    Google Scholar 

  17. Davis, R.A. and Resnick, S.I. (1985) More limit theory for the sample correlation function of moving averages. Stoch. Proc. Appl. 20, 257–279. [281, 385]

    Google Scholar 

  18. Davis, R.A. and Resnick, S.I. (1986) Limit theory for the sample covariance and correlation functions of moving averages. Ann. Statist. 14, 533–558. [281, 385–386, 399]

    Google Scholar 

  19. Priestley, M.B. (1981) Spectral Analysis and Time Series, vols. I and II. Academic Press, New York. [378, 392–393]

    Google Scholar 

  20. Dzhaparidze, K.O. (1986) Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. Springer, Berlin. [392]

    Google Scholar 

  21. Grenander, U. and Rosenblatt, M. (1984) Statistical Analysis of Stationary Time Series, 2nd edition. Chelsea Publishing Co., New York. [392–393, 534]

    Google Scholar 

  22. Anderson, T.W. (1993) Goodness of fit tests for spectral distributions. Ann. Statist. 21, 830–847. [392, 393, 534]

    Google Scholar 

  23. Barndorff-Nielsen, O.E. (1961) On the rate of growth of the partial maxima of a sequence of independent identically distributed random variables. Math. Scand. 9, 383–394. [170, 179, 392]

    Google Scholar 

  24. Barndorff-Nielsen, O.E. (1963) On the limit behaviour of extreme order statistics. Ann. Math. Statist. 34, 992–1002. [170, 179, 392]

    Google Scholar 

  25. Grenander, U. and Rosenblatt, M. (1984) Statistical Analysis of Stationary Time Series, 2nd edition. Chelsea Publishing Co., New York. [392–393, 534]

    Google Scholar 

  26. Klüppelberg, C. and Mikosch, T. (1996) Gaussian limit fields for the integrated periodogram. Ann. Appl. Probab. 6, 969–991. [392]

    Google Scholar 

  27. Dahlhaus, R. (1988) Empirical spectral processes and their applications to time series analysis. Stoch. Proc. Appl. 30, 69–83. [392]

    Google Scholar 

  28. Mikosch, T. and Norvaisa, R. (1997) Uniform convergence of the empirical spectral distribution function. Stoch. Proc. Appl. 70, 85–114. [392]

    MathSciNet  Google Scholar 

  29. Klüppelberg, C. and Mikosch, T. (1996) The integrated periodogram for stable processes. Ann. Statist. 24, 1855–1879. [392, 534–536]

    Google Scholar 

  30. Kokoszka, P. and Mikosch, T. (1997) The integrated periodogram for long-memory processes with finite or infinite variance. Stoch. Proc. Appl. 66, 55–78. [392]

    Google Scholar 

  31. Klüppelberg, C. and Mikosch, T. (1996) Parameter estimation for a misspecified ARMA process with infinite variance innovations. J. Math. Sciences. 78, 60–65. [385, 392]

    Google Scholar 

  32. Mikosch, T. (1997) Periodogram estimates from heavy-tailed data. In: Adler, R., Feldman, R. and Taqqu, M.S. (Eds.) A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions, pp. 241–257. Birkhäuser, Boston. [392]

    Google Scholar 

  33. Klüppelberg, C. and Mikosch, T. (1993) Spectral estimates and stable processes. Stoch. Proc. Appl. 47, 323–344. [392]

    Google Scholar 

  34. Klüppelberg, C. and Mikosch, T. (1994) Some limit theory for the self-normalised periodogram of stable processes. Scand. J. Statist. 21, 485–491. [392–393]

    Google Scholar 

  35. Bhansali, R.J. (1997) Robustness of the autoregressive spectral estimate for linear processes with infinite variance. J. Time Series Anal. 18, 213–229 [392]

    Google Scholar 

  36. Anderson, T.W. (1993) Goodness of fit tests for spectral distributions. Ann. Statist. 21, 830–847. [392, 393, 534]

    Google Scholar 

  37. Priestley, M.B. (1981) Spectral Analysis and Time Series, vols. I and II. Academic Press, New York. [378, 392–393]

    Google Scholar 

  38. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  39. Grenander, U. and Rosenblatt, M. (1984) Statistical Analysis of Stationary Time Series, 2nd edition. Chelsea Publishing Co., New York. [392–393, 534]

    Google Scholar 

  40. Masry, E. and Cambanis, S. (1984) Spectral density estimation for stationary stable processes. Stoch: Proc. Appl. 18, 1–31. [393]

    Google Scholar 

  41. Hsing, T. (1995) Limit theorems for stable processes with application to spectral density estimation. Stoch. Proc. Appl. 57, 39–71. [393]

    Google Scholar 

  42. Box, G.E.P. and Jenkins, G.M. (1970) Time Series Analysis: Forecasting and Control. Holden—Day, San Francisco. [378, 398]

    Google Scholar 

  43. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  44. Whittle, P. (1951) Hypothesis Testing in Time Series Analysis. Almqvist och Wicksel, Uppsala. [393, 399]

    Google Scholar 

  45. Hannan, E.J. (1970) Multiple Time Series. Wiley, New York. [378, 399]

    Google Scholar 

  46. Hannan, E.J. (1973) The asymptotic theory of linear time series. J. Appl. Probab. 10, 130–145. [399]

    Google Scholar 

  47. Giraitis, L. and Surgailis, D. (1990) A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle’s estimate. Probab. Theory Related Fields 86, 87104. [399]

    Google Scholar 

  48. Fox, R. and Taqqu, M.S. (1986) Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14, 517–532. [399]

    Google Scholar 

  49. Dahlhaus, R. (1989) Efficient parameter estimation for self-similar processes. Ann. Statist. 17, 1749–1766. [399]

    Google Scholar 

  50. Heyde, C.C. and Gay, R. (1993) Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stoch. Proc. Appl. 45, 169–182. [399]

    Google Scholar 

  51. Mikosch, T., Gadrich, T., Klüppelberg, C. and Adler, R.J. (1995) Parameter estimation for ARMA models with infinite variance innovations. Ann. Statist. 23, 305–326. [399]

    Google Scholar 

  52. Chung, K.L. and Williams, R.J. (1990) Introduction to Stochastic Integration, 2nd edition. Birkhäuser, Boston. [410, 546]

    Google Scholar 

  53. Karatzas, I. and Shreve, S.E. (1988) Brownian Motion and Stochastic Calculus. Springer, Berlin. [96, 410]

    Google Scholar 

  54. Karatzas, I. and Shreve, S.E. (1998) Methods of Mathematical Finance. Springer, Heidelberg. [410, 482]

    Google Scholar 

  55. Protter, P. (1992) Stochastic Integration and Differential Equations. Springer, Berlin. [410, 546–547]

    Google Scholar 

  56. Rogers, L.C.G. and Williams, D. Diffusions, Markov Processes, and Martingales. Volume 1 (1994) Foundations, 2nd edition. Volume 2 (1987) Itô Calculus. Wiley, New York. [410]

    Google Scholar 

  57. Revuz, D. and Yor, M. (1991) Continuous Martingales and Brownian Motion. Springer, Berlin. [96, 534]

    Google Scholar 

  58. Kloeden, P.E. and Platen, E. (1992) Numerical Solution of Stochastic Differential Equations. Springer, Berlin. [96, 410]

    Google Scholar 

  59. Kloeden, P.E., Platen, E. and Schurz, H. (1994) Numerical Solution of SDE through Computer Experiments. Springer, Berlin. [96, 410]

    Google Scholar 

  60. Borkovec, M. and Klüppelberg, C. (1998) Extremal behaviour of diffusion models in finance. Extremes 1, 47–80. [411]

    Google Scholar 

  61. Garman, M.B. and Klass, M.J. (1980) On the estimation of security price volatilities from historical data. J. Busin. Univ. Chicago 53, 67–78. [411]

    Google Scholar 

  62. Rogers, L.C.G. and Satchell, S.E. (1991) Estimating variance from high, low and closing prices. Ann. Appl. Probab. 1, 504–512. [411]

    Google Scholar 

  63. Bibby, B.M. and Sorensen, M. (1995) Martingale estimation functions for discretely observed diffusion processes. Bernoulli 1, 17–39. [411]

    Google Scholar 

  64. Pedersen, A.R. (1995) A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scand. J. Statist. 22, 55–71. [411]

    Google Scholar 

  65. Sorensen, M. (1997) Estimating functions for discretely observed diffusions: a review. In Basawa, I.V., Godambe, V.P. and Taylor, R.L. (Eds.): Selected Proceedings of the Symposium on Estimating Functions. IMS Lecture Notes - Monograph Series, vol. 32, 305–325. [411]

    Google Scholar 

  66. Florens-Zmirou, D. (1993) On estimating the diffusion coefficient from discrete observations. J. Appl. Prob. 30, 790–804. [411]

    Google Scholar 

  67. Genon-Catalot, V. and Jacod, J. (1993) On the estimation of the diffusion coefficient for multidimensional diffusions. Ann. Inst. H. Poincaré (Probab. Statist.) 29, 119–151. [411]

    Google Scholar 

  68. Kessler, M. (1997) Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist. 24, 211–229. [411]

    Google Scholar 

  69. Göing, A. (1995) Estimation in financial models. Risklab, ETH Zürich. [411]

    Google Scholar 

  70. Melino, A. (1994) Estimation of continuous-time models in finance. In: Sims, C.A. (Ed.) Advances in Econometrics. Proceedings of the 6th World Congress, vol. II, pp. 314–351. Econometric Society, CUP, Cambridge. [411]

    Google Scholar 

  71. Ball, C.A. and Roma, A. (1994) Stochastic volatility option pricing. J. Financial Quant. Anal. 29, 589–607. [411]

    Google Scholar 

  72. Eisenberg, L. and Jarrow, R. (1994) Option pricing with random volatilities in complete markets. Review Quant. Fin. Account. 4, 5–17. [411]

    Google Scholar 

  73. Frey, R. (1997) Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Quarterly 10, 1–34. [411]

    Google Scholar 

  74. Ghysels, E., Harvey, A. and Renault, E. (1996) Stochastic volatility. In: Maddala, G.S. and Rao, C.R. (Eds.) Statistical Methods of Finance. Handbook of Statistics, vol. 14, pp. 119–191. North-Holland, Amsterdam. [411]

    Google Scholar 

  75. Hull, J. and White, A. (1987) The pricing of options on assets with stochastic volatility. J. Finance 42, 281–300. [411]

    Google Scholar 

  76. Hull, J. and White, A. (1988) An analysis of the bias in option pricing caused by a stochastic volatility. Adv. Futures Options Res. 3, 29–61. [411]

    Google Scholar 

  77. Rydberg, T.H. (1997) The normal inverse Gaussian Lévy process: simulation and approximation. Commun. Statist. Stochastic Models 13, 887–910. [411]

    MathSciNet  Google Scholar 

  78. Rydberg, T.H. (1999) Generalized hyperbolic diffusions with applications towards finance. Math. Finance 9, 183–201. [411]

    MathSciNet  Google Scholar 

  79. Scott, L. (1987) Option pricing when the variance changes randomly: theory, estimation and an application. J. Financial Quant. Anal. 22, 419–438. [411]

    Google Scholar 

  80. Sin, C.A. (1998) Complications with stochastic volatility models. Adv. Appl. Probab. 30, 256–268. [4111]

    Google Scholar 

  81. Stein, E. and Stein, C. (1991) Stock price distributions with stochastic volatility: an analytic approach. Rev. Fin. Studies 4, 727–752. [411]

    Google Scholar 

  82. Frey, R. (1997) Derivative asset analysis in models with level-dependent and stochastic volatility. CWI Quarterly 10, 1–34. [411]

    Google Scholar 

  83. Barndorff-Nielsen, O.E. (1997) Normal inverse Gaussian distributions and stochastic volatility modelling. Scand. J. Statist. 24, 1–14. [411, 521]

    Google Scholar 

  84. Barndorff-Nielsen, O.E. (1998) Processes of normal inverse Gaussian type. Finance and Stochastics 2, 41–68. [411, 521]

    Google Scholar 

  85. Eberlein, E. and Keller, U. (1995) Hyperbolic distributions in finance. Bernoulli 1, 281–299. [407, 411, 521]

    Google Scholar 

  86. Kuchler, U., Neumann, K., Sorensen, M. and Streller, A. (1994) Stock returns and hyperbolic distributions. Discussion paper 23. Humboldt Universität Berlin. [411]

    Google Scholar 

  87. Haan, L. de and Karandikar, R.L. (1989) Embedding a stochastic difference equation into a continuous-time process. Stoch. Proc. Appl. 32, 225–235. [411]

    Google Scholar 

  88. Nelson, D.B. (1990) ARCH models as diffusion approximations. J. Econometrics 45, 7–38. [411]

    Google Scholar 

  89. Goldie, C.M. (1991) Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1, 126–166. [455, 467]

    Google Scholar 

  90. Kesten, H. (1973) Random difference equations and renewal theory for products of random matrices. Acta Math. 131, 207–248. [412, 454–457, 467, 473]

    Google Scholar 

  91. Samorodnitsky, G. (1996) A class of shot noise models for financial applications. In: Heyde, C.C., Prokhorov, Yu.V., Pyke, R. and Rachev, S.T. (Eds.) Proceedings of the Athens International Conference on Applied Probability and Time Series, vol. 1: Applied Probability, pp. 332–353. Springer, Berlin. [412]

    Google Scholar 

  92. Müller, U.A., Dacorogna, M.M. and Pictet, O.V. (1996) Heavy tails in high-frequency financial data. In: Adler, R., Feldman, R. and Taqqu, M.S. (Eds.)A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions, pp. 55–77. [386, 406, 412]

    Google Scholar 

  93. Müller, U.A., Dacorogna, M.M., Davé, R.D., Olsen, R.B., Pictet, O.V. and von Weizsäcker, J.E. (1997) Volatilities of different time resolutions - analyzing the dynamics of market components. J. Empirical Finance 4, 214–240. [412, 480]

    Google Scholar 

  94. Embrechts, P., Samorodnitsky, G., Dacorogna, M.M. and Müller, U.A. (1998) How heavy are the tails of a stationary HARCH(k) process? A study of the moments. In: Karatzas, I., Rajput, B.S. and Taqqu, M.S. (Eds.) Stochastic Processes and Related Topics: In Memory of Stamatis Cambanis 1943–1995 pp. 69–102. Birkhäuser, Boston. [412]

    Google Scholar 

  95. Vries, C.G. de (1991) On the relation between GARCH and stable processes. J. Econometrics 48, 313–324. [412]

    Google Scholar 

  96. Mittnik, S. and Rachev, S.T. (1993) Modeling asset returns with alternative stable distributions. Econom. Rev. 12, 261–396. [345, 412, 522]

    Google Scholar 

  97. Mittnik, S. and Rachev, S.T. (2000) Stable Paretian Models. Series in Financial Economics and Quantitative Analysis. Wiley, New York. [345, 412, 540, 545]

    Google Scholar 

  98. Taylor, S.J. (1986) Modelling Financial Time Series. Wiley, Chichester. [403405, 412, 462]

    Google Scholar 

  99. Shephard, N. (1996) Statistical aspects of ARCH and stochastic volatility. In: Cox, D.R., Hinkley, D.V. and Barndorff-Nielsen, O.E. (Eds.) Likelihood, Time Series with Econometric and other Applications. Chapman and Hall, London. [412, 454, 4112]

    Google Scholar 

  100. Bollerslev, T., Chou, R.Y. and Kroner, K.F. (1992) ARCH models in finance: A review of the theory and evidence. J. Econometrics, 52, 5–59. [412]

    Google Scholar 

  101. Hannan, E.J. and Kanter, M. (1977) Autoregressive processes with infinite variance. J. Appl. Probab. 14, 411–415. [399]

    Google Scholar 

  102. An, H.Z. and Chen, Z.G. (1982) On convergence of LAD estimates in autoregression with infinite variance. J. Multivariate Anal. 12, 335–345. [402]

    Google Scholar 

  103. Davis, R.A., Knight, K. and Liu, J. (1992) M-estimation for autoregressions with infinite variance. Stoch. Proc. Appl. 40, 145–180. [402]

    Google Scholar 

  104. Feigin, P. and Resnick, S.I. (1992) Estimation for autoregressive processes with positive innovations. Commun. Statist. Stochastic Models 8, 479–498. [402]

    MathSciNet  Google Scholar 

  105. Feigin, P. and Resnick, S.I. (1994) Limit distributions for linear programming time series estimators. Stoch. Proc. Appl. 51, 135–166. [402]

    Google Scholar 

  106. Hsing, T. (1993) On some estimates based on sample behavior near high level excursions. Probab. Theory Related Fields 95, 331–356. [402, 425]

    Google Scholar 

  107. Kokoszka, P. and Taqqu, M.S. (1996) Parameter estimation for infinite variance fractional ARIMA. Ann. Statist. 24, 1880–1913. [402]

    Google Scholar 

  108. Davis, R.A. (1996) Gauss-Newton and M-estimation for ARMA processes with infinite variance. Stoch. Proc. Appl. 63, 75–95. [403]

    Google Scholar 

  109. Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods, 2nd edition. Springer, New York. [217, 218, 316, 371–403, 533, 541]

    Google Scholar 

  110. Bhansali, R.J. (1984) Order determination for processes with infinite variance. In: Franke, J., Härdle, W. and Martin, D. (Eds.) Robust and Nonlinear Time Series Analysis, pp. 17–25. Springer, New York. [403]

    Google Scholar 

  111. Bhansali, R.J. (1988) Consistent order determination for processes with infinite variance. J. Roy. Statist. Soc. Ser. B 50, 46–60. [403]

    Google Scholar 

  112. Knight, K. (1989) Consistency of Akaike’s information criterion for autoregressive processes. Ann. Statist. 17, 824–840. [403]

    Google Scholar 

  113. Mandelbrot, B. (1963) The variation of certain speculative prices. J. Busin. Univ. Chicago 36, 394–419. [345, 405]

    Google Scholar 

  114. Fama, E.F. (1965) The behaviour of stock market prices. J. Busin. Univ. Chicago 38, 34–105. [405]

    Google Scholar 

  115. Groenendijk, P.A., Lucas, A.L. and Vries, C.G. de (1995) A note on the relationship between GARCH and symmetric stable processes. J. Empirical Finance 2, 253–264. [405]

    Google Scholar 

  116. Ghose, D. and Kroner, K.F. (1995) The relationship between GARCH and symmetric stable processes: Finding the source of fat tails in financial data. J. Empirical Finance 2 225–251. [405]

    Google Scholar 

  117. Taylor, S.J. (1986) Modelling Financial Time Series. Wiley, Chichester. [403405, 412, 462]

    Google Scholar 

  118. Fama, E.F. and Roll, R. (1968) Some properties of symmetric stable distributions. J. Amer. Statist. Assoc. 63, 817–836. [405]

    Google Scholar 

  119. Blattberg, R.C. and Gonedes, N.J. (1974) A comparison of the stable and the Student distributions as statistical models for stock prices. J. Busin. Univ. Chicago 47, 244–280. [405]

    Google Scholar 

  120. Hagerman, R.L. (1978) More evidence on the distribution of security returns. J. Finance 23, 1213–1221. [405]

    Google Scholar 

  121. Perry, P.R. (1983) More evidence on the nature of the distribution of security returns. J. Financial Quant. Anal. 18, 211–221. [405]

    Google Scholar 

  122. Fama, E.F. (1976) Foundations of Finance. Blackwell, Oxford. [406]

    Google Scholar 

  123. Resnick, S.I. and Stâricä, C. (1995) Consistency of Hill’s estimator for dependent data. J. Appl. Probab. 32, 239–167. [270, 337]

    Google Scholar 

  124. Resnick, S.I. and Stäricä, C. (1997) Asymptotic behaviour of Hill’s estimator for autoregressive data. Commun. Statist. Stochastic Models 13, 703–721. [270, 337, 406]

    Google Scholar 

  125. Müller, U.A., Dacorogna, M.M. and Pictet, O.V. (1996) Heavy tails in high-frequency financial data. In: Adler, R., Feldman, R. and Taqqu, M.S. (Eds.)A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions, pp. 55–77. [386, 406, 412]

    Google Scholar 

  126. Longin, F. (1996) The Asymptotic Distribution of Extreme Stock Market Returns. J. Busin. 63, 383–408. [290, 330, 386, 406]

    Google Scholar 

  127. Loretan, M. and Phillips, C.B. (1994) Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial instruments. J. Empirical Finance 1, 211–248. [330, 406, 386]

    Google Scholar 

  128. Eberlein, E. and Keller, U. (1995) Hyperbolic distributions in finance. Bernoulli 1, 281–299. [407, 411, 521]

    Google Scholar 

  129. Medhi, J. (1992) Statistical Methods. Wiley Eastern, New Delhi. [407]

    Google Scholar 

  130. Mood, A.M., Graybill, F.A. and Boes, D.C. (1974) Introduction to the Theory of Statistics, 3rd edition. McGraw-Hill, Kogakusha, Tokyo. [407]

    Google Scholar 

  131. Ball, C.A. (Ed.) (1993) A review of stochastic volatility models with application to option pricing. In: Financial Markets, Institutions and Instruments vol. 2, pp. 55–71. Blackwell, Cambridge. [408]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Emberchts, P., Klüppelberg, C., Mikosch, T. (1997). Time Series Analysis for Heavy-Tailed Processes. In: Modelling Extremal Events. Applications of Mathematics, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33483-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33483-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08242-9

  • Online ISBN: 978-3-642-33483-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics