Skip to main content

Coherent Interaction of a Single Fermion with a Small Bosonic Field

  • Chapter
  • First Online:
From Atom Optics to Quantum Simulation

Part of the book series: Springer Theses ((Springer Theses))

  • 1493 Accesses

Abstract

Multi-component systems play a central role in quantum many-body physics. From interacting atoms and photons to electrons and phonons, the interplay of interactions in binary mixtures gives rise to intriguing quantum phenomena such as superradiance, BCS superfluidity or polaron physics[1–4] . Recently, the problem of impurities embedded in an external quantum environment has also shifted into the focus of ultracold atom experiments. For example, fermionic spin impurities in a Fermi sea have lead to the observation of a Fermi polaron [5, 6] and the interactions between a single ion and a Bose-Einstein condensate have been studied [7, 8]. When such impurity systems are scaled down to the few-body regime, they can share important properties with models for atomic nuclei [9]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the technical details of the numerical Fourier analysis see Appendix D.

  2. 2.

    For typical lattice depths used in experiments (below \(50\) \(E_\mathrm{{rec}}\)) the harmonic approximation of a lattice site typically entails large errors, because the actual on-site wavefunction in a sinusoidal lattice deviates significantly from the Gaussian ground state wavefunction of a harmonic oscillator potential. Consequently, the interaction energy \(U\) and even more the tunneling coupling \(J\) deviate from their actual values (see Chap. 3).

References

  1. A.S. Alexandrov, N.F. Mott, Bipolarons. Rep. Prog. Phys. 57, 1197 (1994)

    Article  ADS  Google Scholar 

  2. M. Bruderer, A. Klein, S.R. Clark, D. Jaksch, Polaron physics in optical lattices. Phys. Rev. A 76, 011605 (2007)

    Article  ADS  Google Scholar 

  3. J. Tempere, W. Casteels, M.K. Oberthaler, S. Knoop, E. Timmermans, J.T. Devreese, Feynman path-integral treatment of the BEC-impurity polaron. Phys. Rev. B 80, 184504 (2009)

    Article  ADS  Google Scholar 

  4. A. Privitera, W. Hofstetter, Polaronic slowing of fermionic impurities in lattice Bose-Fermi mixtures. Phys. Rev. A 82, 063614 (2010)

    Article  ADS  Google Scholar 

  5. A. Schirotzek, C.-H. Wu, A. Sommer, M.W. Zwierlein, Observation of fermi polarons in a tunable fermi liquid of ultracold atoms. Phys. Rev. Lett. 102, 230402 (2009)

    Article  ADS  Google Scholar 

  6. S. Nascimbène, N. Navon, K.J. Jiang, L. Tarruell, M. Teichmann, J. McKeever, F. Chevy, C. Salomon, Collective oscillations of an imbalanced fermi gas: axial compression modes and polaron effective mass. Phys. Rev. Lett. 103, 170402 (2009)

    Article  ADS  Google Scholar 

  7. C. Zipkes, S. Palzer, C. Sias, M. Köhl, A trapped single ion inside a Bose-Einstein condensate. Nature 464, 388 (2010)

    Article  ADS  Google Scholar 

  8. S. Schmid, A. Härter, J.H. Denschlag, Dynamics of a cold trapped ion in a Bose-Einstein condensate. Phys. Rev. Lett. 105, 133202 (2010)

    Article  ADS  Google Scholar 

  9. L. Platter, Low-energy universality in atomic and nuclear physics. Few-Body Syst. 46, 139 (2009)

    Article  ADS  Google Scholar 

  10. A. Albus, F. Illuminati, J. Eisert, Mixtures of bosonic and fermionic atoms in optical lattices. Phys. Rev. A 68, 023606 (2003)

    Article  ADS  Google Scholar 

  11. K. Günter, T. Stöferle, H. Moritz, M. Köhl, T. Esslinger, Bose-Fermi mixtures in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180402 (2006)

    Article  Google Scholar 

  12. S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Sengstock, K. Bongs, Localization of bosonic atoms by fermionic impurities in a three-dimensional optical lattice. Phys. Rev. Lett. 96, 180403 (2006)

    Article  ADS  Google Scholar 

  13. T. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, D.-S. Lühmann, I. Bloch, Role of interactions in \({}^{87}\)Rb-\({}^{40}\)K Bose-Fermi mixtures in a 3D optical lattice. Phys. Rev. Lett. 102, 030408 (2009)

    Article  ADS  Google Scholar 

  14. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Zoo of quantum phases and excitations of cold bosonic atoms in optical lattices. Phys. Rev. Lett. 95, 030405 (2005)

    Article  ADS  Google Scholar 

  15. D.-S. Lühmann, K. Bongs, K. Sengstock, D. Pfannkuche, Self-trapping of Bosons and Fermions in optical lattices. Phys. Rev. Lett. 101, 050402 (2008)

    Article  Google Scholar 

  16. P.R. Johnson, E. Tiesinga, J.V. Porto, C.J. Williams, Effective three-body interactions of neutral bosons in optical lattices. New J. Phys. 11, 093022 (2009)

    Article  ADS  Google Scholar 

  17. H.P. Büchler, Microscopic derivation of Hubbard parameters for cold atomic gases. Phys. Rev. Lett. 104, 090402 (2010)

    Article  Google Scholar 

  18. O. Dutta, A. Eckardt, P. Hauke, B. Malomed, M. Lewenstein, Bose-Hubbard model with occupation-dependent parameters. New J. Phys. 13, 023019 (2011)

    Article  ADS  Google Scholar 

  19. A. Mering, M. Fleischhauer, Multiband and nonlinear hopping corrections to the three-dimensional Bose-Fermi-Hubbard model. Phys. Rev. A 83, 063630 (2011)

    Article  ADS  Google Scholar 

  20. A. Simoni, M. Zaccanti, C. D’Errico, M. Fattori, G. Roati, M. Inguscio, G. Modugno, Near-threshold model for ultracold KRb dimers from interisotope Feshbach spectroscopy. Phys. Rev. A 77, 052705 (2008)

    Article  ADS  Google Scholar 

  21. E.G.M. van Kempen, S.J.J.M.F. Kokkelmans, D.J. Heinzen, B.J. Verhaar, Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002)

    Google Scholar 

  22. N.N. Klausen, J.L. Bohn, C.H. Greene, Nature of spinor Bose-Einstein condensates in rubidium. Phys. Rev. A 64, 053602 (2001)

    Article  ADS  Google Scholar 

  23. S. Will, T. Best, U. Schneider, L. Hackermüller, D.-S. Lühmann, I. Bloch, Time-resolved observation of coherent multi-body interactions in quantum phase revivals. Nature 465, 197 (2010)

    Article  ADS  Google Scholar 

  24. M. Greiner, O. Mandel, T. Hänsch, I. Bloch, Collapse and revival of the matter wave field of a Bose-Einstein condensate. Nature 419, 51 (2002)

    Article  ADS  Google Scholar 

  25. D.-S. Lühmann, Multiorbital physics in optical lattices. Ph.D. Thesis, Universität Hamburg, 2009

    Google Scholar 

  26. G. Roati, E. de Mirandes, F. Ferlaino, H. Ott, G. Modugno, M. Inguscio, Atom interferometry with trapped fermi gases. Phys. Rev. Lett. 92, 230402 (2004)

    Article  ADS  Google Scholar 

  27. T. Rom, Bosonische und fermionische Quantengase in dreidimensionalen optischen Gittern. Ph.D. Thesis, Ludwig-Maximilians-Universität München, 2009

    Google Scholar 

  28. S.R. Manmana, S. Wessel, R.M. Noack, A. Muramatsu, Strongly correlated fermions after a quantum quench. Phys. Rev. Lett. 98, 210405 (2007)

    Article  ADS  Google Scholar 

  29. M. Moeckel, S. Kehrein, Interaction quench in the Hubbard model. Phys. Rev. Lett. 100, 175702 (2008)

    Article  ADS  Google Scholar 

  30. M. Eckstein, M. Kollar, P. Werner, Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett. 103, 056403 (2009)

    Article  ADS  Google Scholar 

  31. M. Schiró, M. Fabrizio, Time-dependent mean field theory for quench dynamics in correlated electron systems. Phys. Rev. Lett. 105, 076401 (2010)

    Article  ADS  Google Scholar 

  32. S.R. Manmana, S. Wessel, R.M. Noack, A. Muramatsu, Time evolution of correlations in strongly interacting fermions after a quantum quench. Phys. Rev. B 79, 155104 (2009)

    Article  ADS  Google Scholar 

  33. M. Rigol, Quantum quenches and thermalization in one-dimensional fermionic systems. Phys. Rev. A 80, 053607 (2009)

    Article  ADS  Google Scholar 

  34. M. Rigol, Breakdown of thermalization in finite one-dimensional systems. Phys. Rev. Lett. 103, 100403 (2009)

    Article  ADS  Google Scholar 

  35. P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, Relaxation of antiferromagnetic order in spin-\(1/2\) chains following a quantum quench. Phys. Rev. Lett. 102, 130603 (2009)

    Article  ADS  Google Scholar 

  36. P. Barmettler, M. Punk, V. Gritsev, E. Demler, E. Altman, Quantum quenches in the anisotropic spin-\({\frac{1}{2}}\) Heisenberg chain: different approaches to many-body dynamics far from equilibrium. New J. Phys. 12, 055017 (2010)

    Article  ADS  Google Scholar 

  37. M. Srednicki, Chaos and quantum thermalization. Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  38. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  39. S. Trotzky, Y.-A. Chen, A. Flesch, I.P. McCulloch, U. Schollwöck, J. Eisert, I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys. 8, 325 (2011)

    Article  Google Scholar 

  40. T. Lompe, T.B. Ottenstein, F. Serwane, A.N. Wenz, G. Zürn, S. Jochim, Radio-frequency association of Efimov trimers. Science 330, 940 (2010)

    Article  ADS  Google Scholar 

  41. H.P. Büchler, G. Blatter, Supersolid versus phase separation in atomic Bose-Fermi mixtures. Phys. Rev. Lett. 91, 130404 (2003)

    Article  Google Scholar 

  42. E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  43. I. Titvinidze, M. Snoek, W. Hofstetter, Supersolid Bose-Fermi mixtures in optical lattices. Phys. Rev. Lett. 100, 100401 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Will .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Will, S. (2013). Coherent Interaction of a Single Fermion with a Small Bosonic Field. In: From Atom Optics to Quantum Simulation. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33633-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33633-1_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33632-4

  • Online ISBN: 978-3-642-33633-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics