Skip to main content

White-Rot Fungi in Bioremediation

  • Chapter
  • First Online:
Fungi as Bioremediators

Part of the book series: Soil Biology ((SOILBIOL,volume 32))

Abstract

Bioremediation is defined as the application of biological processes to the treatment of pollution. Most research on the field of bioremediation has focused on bacteria, and fungal bioremediation (mycoremediation) has also been attracting the interest just for a couple of decades. The toxicity of many pollutants reduces natural attenuation of bacteria, but white-rot fungi (WRF) can challenge with toxic levels of the most pollutants. Fungi are robust organisms having very high tolerance to toxic environments, and this feature makes them ideal to use for bioremedial purposes. White-rot fungi are basidiomycetes that are capable of degrading a lignocellulose substrate. Extracellular enzymes involved in the degradation of lignin and xenobiotics by white-rot fungi include several kinds of laccases, peroxidases, and oxidases producing H2O2. Nowadays, great progress in this area may derive from modern molecular technologies, which may provide cheaper potential sources of various enzymes by means of genetically modified microorganisms or plants.

This chapter explains the bioremediation and its application conditions and degradation mechanisms of the harmful compounds such as textile dyes, PAHs, chlorophenols, TNT, pesticides, and nylon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adedokun OM, Ataga AE (2007) Effects of amendments and bioaugmentation of soil polluted with crude oil, automotive gasoline oil, and spent engine oil on the growth of cowpea (Vigna unguiculata L. Walp). Sci Res Essay 2:147–149

    Google Scholar 

  • Adenipekun CO, Fasidi IO (2005) Bioremediation of oil-polluted soil by Lentinus subnudus, a Nigerian white-rot fungus. Afr J Biotechnol 4:796–798

    CAS  Google Scholar 

  • Ahn MY, Dec J, Kim J, Bollag JM (2002) Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual 31:1509–1515

    Article  PubMed  CAS  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Academic, New York

    Google Scholar 

  • Alloway JB, Ayres DC (1993) Chemical principles of environmental pollution. Chapman and Hall, London

    Book  Google Scholar 

  • Aust SD, Barr DP (1994) Mechanism white rot fungi use to degrade pollutants. Environ Sci Technnol 28:78–87

    Google Scholar 

  • Aust SD, Swaner PR, Stahl JD (2003) Detoxification and metabolism of chemicals by white-rot fungi. In: Zhu JJPC, Aust SD, Lemley Gan AT (eds) Pesticide decontamination and detoxification. Oxford University Press, Washington, DC, pp 3–14

    Chapter  Google Scholar 

  • Azadpour A, Powell PD, Matthews J (1997) Use of lignin degrading fungi in bioremediation. Remediation 997:25–49

    Article  Google Scholar 

  • Baker Lee CJ, Fletcher MA, Avila OI, Callanan J, Yunker S, Munnecke DM (1995) Bioremediation of MGP soils with mixed fungal and bacterial cultures. In: Hinchee RE, Fredrickson J, Alleman B (eds) Third international in situ and on-site bioremediation symposium. pp 123–128

    Google Scholar 

  • Baldrian PC, Der Viesche C, Gabriel S, Nerud F, Zadrazil F (2000) influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66:2471–2478

    Article  PubMed  CAS  Google Scholar 

  • Bending G, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996) Mineralization of polycyclic aromatic hydrocarbons by the white-rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295

    PubMed  CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62:1597–1603

    PubMed  CAS  Google Scholar 

  • Boopathy R (2000) Bioremediation of explosives contaminated soil. Int Biodeter Biodegrad 46:29–36

    Article  CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    PubMed  CAS  Google Scholar 

  • Bumpus JA, Tatarko M (1994) Biodegradation of 2,4,6-trinitrotoluene by Phanerochaete chrysosporium: identification of initial degradation products and the discovery of a TNT-metabolite that inhibits lignin peroxidase. Curr Microbiol 28:185–190

    Article  CAS  Google Scholar 

  • Bumpus JA, Powers RH, Sun T (1993) Biodegradation of DDE (1,1-dichloro-2,2-bis(4-chlorophenyl)ethene) by Phanerochaete chrysosporium. Mycol Res 97:95–98

    Article  CAS  Google Scholar 

  • Buyuksonmez F, Rynk R, Hess T, Bechinski E (1999) Occurrence, degradation and fate of pesticides during composting – Part I: Composting, pesticides, and pesticide degradation. Compost Sci Util 7:66–82

    Google Scholar 

  • Camarero S, Sarkar S, Ruiz-Dueñas FJ, Martínez MJ, Martinez AT (1999) Description of a versatile peroxidase involved in natural degradation of lignin that has both Mn-peroxidase and lignin-peroxidase substrate binding sites. J Biol Chem 274:10324–10330

    Article  PubMed  CAS  Google Scholar 

  • Christian M, Claude J, Pierre B (2003) Fungal laccases: from structure-activity studies to environmental applications. Environ Chem Lett 1:145–148

    Article  CAS  Google Scholar 

  • Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62:4563–4567

    PubMed  CAS  Google Scholar 

  • Cornwell KL, Tinland-Butez MF, Tardone PJ, Cabasso I, Hammel KE (1990) Lignin degradation and lignin peroxidase production in cultures of Phanerochaete chrysosporium immobilized on porous ceramic supports. Enzyme Microbiol Technol 12:916–920

    Article  CAS  Google Scholar 

  • Cripps C, Bumpus JA, Aust SD (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl Environ Microbiol 56:1114–1118

    PubMed  CAS  Google Scholar 

  • Dec J, Bollag JM (1994) Dehalogenation of chlorinated phenols during oxidative coupling. Environ Sci Technol 28:484–490

    Article  PubMed  CAS  Google Scholar 

  • Deguchi T, Kakezawa M, Nishida T (1997) Nylon biodegradation by lignin-degrading fungi. Appl Environ Microbiol 63:329–331

    PubMed  CAS  Google Scholar 

  • Deguchi T, Kitaoka Y, Kakezawa M, Nishida T (1998) Purification and characterization of a nylon-degrading enzyme. Appl Environ Microbiol 64:1366–1371

    PubMed  CAS  Google Scholar 

  • Dhawale SW, Dhawale SS, Dean-Ross D (1992) Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as non-ligninolytic conditions. Appl Environ Microbiol 58:3000–3006

    PubMed  CAS  Google Scholar 

  • Dibble JT, Bartha R (1979) Rehabilitation of oil-inundated agricultural land: a case history. Soil Sci 128:56–60

    Article  CAS  Google Scholar 

  • Dodor DE, Hwang HM, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microbiol Technol 35:210–217

    Article  CAS  Google Scholar 

  • Donnelly KC, Chen JC, Huebner HJ, Brown KW, Autenrieth RL, Bonner JS (1997) Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture. Environ Toxicol Chem 16:1105–1110

    Article  CAS  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Ostergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Copper depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Article  PubMed  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Duran N, Rosa M, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microbiol Technol 31:907–931

    Article  CAS  Google Scholar 

  • Edwards W, Leukes WD, Bezuidenhout JJ (2002) Ultrafiltration of petrochemical industrial wastewater using immobilised manganese peroxidase and laccase: application in the defouling of polysulfone membranes. Desalination 149:275–278

    Article  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson KEL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  CAS  Google Scholar 

  • Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin

    Book  Google Scholar 

  • Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G (1996) The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235:508–515

    Article  PubMed  CAS  Google Scholar 

  • Glenn JK, Morgan MA, Mayfield MB, Kuwahara M, Gold ML (1983) An extracellular H2O2 requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun 144:1077–1083

    Article  Google Scholar 

  • Godfrey BJ, Mayfield MB, Brown JA, Gold MH (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119–124

    Article  PubMed  CAS  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidase involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp Ser 389:127–140

    Article  CAS  Google Scholar 

  • Gramss G, Kirsche B, Viogt KD, Gunther T, Fritsche W (1998) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103:1009–1018

    Article  Google Scholar 

  • Guenther T, Sack U, Hofrichter M, Laetz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38:113–122

    Article  CAS  Google Scholar 

  • Guillén F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  PubMed  Google Scholar 

  • Hammel K (1995) Organopollutant degradation by ligninolytic fungi. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 331–346

    Google Scholar 

  • Hammel KE, Tardone PJ (1988) The oxidative 4-dechlorination of polychlorinated phenols is catalyzed by extracellular fungal lignin peroxidases. Biochemistry 27:6563–6568

    Article  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261:16948–16952

    PubMed  CAS  Google Scholar 

  • Hatakka A (1994) Ligninolytic enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers, vol 1. Wiley-VCH, Weinheim

    Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC, Pegler DN (1995) Ainsworth DN and Bisby’s dictionary of the fungi, 8th edn. CAB, Oxon

    Google Scholar 

  • Heinfling A, Martinez MJ, Martinez AT, Bergbauer M, Szewzyk U (1998) Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction. Appl Environ Microbiol 64:2788–2793

    PubMed  CAS  Google Scholar 

  • Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22:692–698

    PubMed  CAS  Google Scholar 

  • Hodgson J, Rho D, Guiot SR, Ampleman G, Thiboutot S, Hawari J (2000) Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium. Can J Microbiol 46:110–118

    PubMed  CAS  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microbiol Technol 30:454–466

    Article  CAS  Google Scholar 

  • Isikhuemhen O, Anoliefo G, Oghale O (2003) Bioremediation of crude oil polluted soil by the white rot fungus Pleurotus tuber-regium (Fr.) Sing. Environ Sci Pollut Res 10:108–112

    Article  CAS  Google Scholar 

  • Jackson M, Hou L, Banerjee H, Sridhar R, Dutta S (1999) Disappearance of 2,4-dinitrotoluene and 2-amino,4,6-dinitrotoluene by Phanerochaete chrysosporium under non-ligninolytic conditions. Bull Environ Contam Toxicol 62:390–396

    Article  PubMed  CAS  Google Scholar 

  • Janik F, Wolf HU (1992) The Ca2+-transport-ATPase of human erythrocytes as an in vitro toxicity test system-Acute effects of some chlorinated compounds. J Appl Toxicol 12:351–358

    Article  PubMed  CAS  Google Scholar 

  • Jolivalt C, Raynal A, Caminade E, Kokel B, Le Goffic F, Mougin C (1999) Transformation of N′, N′-dimethyl-N-(hydroxyphenyl)ureas by laccase from the white rot fungus Trametes versicolor. Appl Microbiol Biotechnol 51:676–681

    Article  CAS  Google Scholar 

  • Jönsson L, Johansson T, Sjostrom K, Nyman PO (1987) Purification of ligninase isozymes from the white-rot fungus Trametes versicolor. Acta Chem Scand B 41:766–769

    Article  Google Scholar 

  • Joshi DK, Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 59:1779–1785

    PubMed  CAS  Google Scholar 

  • Kaal EEJ, De Jong E, Field JA (1993) Stimulation of ligninolytic peroxidase activity by nitrogen nutrients in the white-rot fungus Bjerkandera sp. strain BOS 55. Appl Environ Microbiol 59:4031–4036

    PubMed  CAS  Google Scholar 

  • Kantelinen A, Hatakka A, Viikari L (1989) Production of lignin peroxidase and laccase by Phlebia radiata. Appl Microbiol Biotechnol 31:234–239

    Google Scholar 

  • Kersten PJ, Kalyanaraman B, Hammel KE, Reinhammar B, Kirk TK (1990) Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes. Biochem J 268:475–480

    PubMed  CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic combustion: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  PubMed  CAS  Google Scholar 

  • Lankinen P (2004) Ligninolytic enzymes of the basidiomycetous fungi Agaricus bisporus and Phlebia radiata on lignocellulose-containing media. eThesis, Faculty of Agriculture and Forestry of the University of Helsinki

    Google Scholar 

  • Leontievsky AA, Vares T, Lankinen P, Shergill JK, Pozdnyakova NN, Myasoedova NM, Kalkkinen N, Golovleva LA, Cammack R, Thurston CF, Hatakka A (1997) Blue and yellow laccases of ligninolytic fungi. FEMS Microbiol Lett 156:9–14

    Article  PubMed  CAS  Google Scholar 

  • Leontievsky AA, Myasoedova NM, Baskunov BP, Evans CS, Golovleva LA (2000) Transformation of 2,4,6-trichlorophenol by the white rot fungi Panus tigrinus and Coriolus versicolor. Biodegradation 11:331–340

    Article  PubMed  CAS  Google Scholar 

  • Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39:207–214

    Article  CAS  Google Scholar 

  • Levine WG (1965) Laccase: a review. In: Peisach J (ed) The biochemistry of copper. Academic, New York, pp 371–385

    Google Scholar 

  • Lundell T, Hatakka A (1994) Participation of Mn(II) in the catalysis of laccase, manganese peroxidase and lignin peroxidase from Phlebia radiata. FEBS Lett 348:291–296

    Article  PubMed  CAS  Google Scholar 

  • Martínez MJ, Ruiz-Duenas FJ, Guillen F, Martinez AT (1996) Purification and catalytic properties of two manganese peroxidase isoenzyme from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  PubMed  Google Scholar 

  • Masaphy S, Levanon D, Vaya J, Henis Y (1993) Isolation and characterization of a novel atrazine metabolite produced by the fungus Pleurotus pulmonarius, 2-chloro-4-ethylamino-6- (1-hydroxyisopropyl)amino-1,3,5-triazine. Appl Environ Microbiol 59:4342–4346

    PubMed  CAS  Google Scholar 

  • Mayfield MB, Godfrey BJ, Gold MH (1994) Characterization of the MnP2 gene encoding manganese peroxidase isozyme 2 from the basidiomycete Phanerochaete chrysosporium. Gene 142:231–235

    Article  PubMed  CAS  Google Scholar 

  • Mentzer E, Ebere D (1996). Remediation of hydrocarbon contaminated sites. A paper presented at 8th Biennial International Seminar on the Petroleum Industry and the Nigerian Environment, November, Port Harcourt

    Google Scholar 

  • Meysami P (2001) Feasibility study of fungal bioremediation of a flare pit soil using white rot fungi. Thesis, The University of Calgary

    Google Scholar 

  • Michaels GB, Lewis DL (1985) Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations. Environ Toxicol Chem 4:45–50

    Article  CAS  Google Scholar 

  • Mielgo I, Palma C, Guisan JM, Fernandez-Lafuente R, Moreira MT, Feijoo G, Lema JM (2003) Covalent immobilisation of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp BOS55. Enzyme Microbiol Technol 32:769–775

    Article  CAS  Google Scholar 

  • Moilanen AM, Lundell T, Vares T, Hatakka A (1996) Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Appl Microbiol Biotechnol 45:792–799

    Article  CAS  Google Scholar 

  • Morgan P, Lewis ST, Watkinson RJ (1991) Comparison of abilities of white-rot fungi to mineralize selected xenobiotic compounds. Appl Microbiol Biotechnol 34:693–696

    Article  CAS  Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P (1994) Biotransformation of the herbicide atrazine by the white-rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    PubMed  CAS  Google Scholar 

  • Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59

    Article  CAS  Google Scholar 

  • Mourato S, Ozdemiroglu E, Foster V (2000) Evaluating health and environmental impact of pesticide use: implications for the design of ecolabels and pesticide taxes. Environ Sci Technol 34:1456–1461

    Article  CAS  Google Scholar 

  • Muñoz C, Guillen F, Martinez AT, Martinez MJ (1997) Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr Microbiol 34:1–5

    Article  PubMed  Google Scholar 

  • Odu CTI (1978) The effect of nutrient application and aeration on oil degradation in soils. Environ Pollut 15:235–240

    Article  CAS  Google Scholar 

  • Odu CTI (1981) Degradation and weathering of crude oil under tropical conditions. In: Proceedings of the international seminar on the petroleum industry and the Nigerian environment. NNPC Publication

    Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin degrading peroxidases among various wood degrading fungi. Appl Environ Microbiol 59:4017–4023

    PubMed  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  PubMed  CAS  Google Scholar 

  • Paszczynski A, Crawford R (1991) Degradation of azo compounds by ligninase from Phanerochaete chrysosporium: involvement of veratryl alcohol. Biochem Biophys Res Commun 178:1056–1063

    Article  PubMed  CAS  Google Scholar 

  • Paszczynski A, Crawford RL (1995) Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Prog 11:368–379

    Article  CAS  Google Scholar 

  • Paszczynski A, Pasti-Grigsby MB, Gosczynski S, Crawford RL, Crawford DL (1992) Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus. Appl Environ Microbiol 58:3598–3604

    PubMed  CAS  Google Scholar 

  • Pease EA, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium: primary structure deduced from cDNA sequence. J Biol Chem 264:13531–13535

    PubMed  CAS  Google Scholar 

  • Perie FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microbiol 57:2240–2245

    PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Vrijmoed LLP (2000) Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World J Microbiol Biotechnol 16:317–318

    Google Scholar 

  • Pozdnyakova NN, Nikitina VE, Turovskaya OV (2008) Bioremediation of Oil-polluted Soil with Association Including the Fungus Pleurotus ostreatus and Soil Microflora. Appl Biochem Microbiol 44:69–75

    Article  Google Scholar 

  • Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Biol Chem 264:5036–5040

    PubMed  CAS  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    PubMed  CAS  Google Scholar 

  • Reddy CA, Mathew Z (2001) Bioremediation potential of white rot fungi. In: Gadd GM (ed) Fungi in bioremediation. Cambridge University Press, Cambridge

    Google Scholar 

  • Reddy GVB, Gelpke MDS, Gold MH (1998) Degradation of 2,4,6-trichlorophenol by Phanerochaete chrysosporium, involvement of reductive dechlorination. J Bacteriol 180:5159–5164

    PubMed  CAS  Google Scholar 

  • Rodakiewicz-Nowak J, Haber J, Pozdnyakova N, Leontievsky A, Golovleva LA (1999) Effect of ethanol on enzymatic activity of fungal laccases. Biosci Rep 19:589–600

    Article  PubMed  CAS  Google Scholar 

  • Rodakiewicz-Nowak J, Kasture SM, Dudek B, Haber J (2000) Effect of various water-miscible solvents on enzyme activity of fungal laccases. J Mol Catal B Enzym 11:1–11

    Article  CAS  Google Scholar 

  • Rodríguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol, 38:27–32

    Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood decay fungi. Appl Environ Microbiol 63:3919–3925

    PubMed  CAS  Google Scholar 

  • Schlosser D, Grey R, Fritsche W (1997) Patterns of ligninolytic enzymes in Trametes versicolor. Distribution of extra and intracellular enzyme activities during cultivation on glucose, wheat straw and beech wood. Appl Microb Biotechnol 47:412–418

    Article  CAS  Google Scholar 

  • Shimada M, Ma DB, Akamatsu Y, Hattori T (1994) A proposed role of oxalic acid in wood decay systems of wood rotting basidiomycetes. FEMS Microbiol Rev 13:285–296

    Article  CAS  Google Scholar 

  • Spadaro JT, Gold MH, Renganathan V (1992) Degradation of azo dyes by the lignin-degrading fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:2397–2401

    PubMed  CAS  Google Scholar 

  • Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432

    PubMed  CAS  Google Scholar 

  • Sundaramoorthy M, Kishi K, Gold MH, Poulos TL (1994) The crystal structure of manganese peroxidase from Phanerochaete chrysosporium at 2.06-Å resolution. J Biol Chem 269:32759–32767

    PubMed  CAS  Google Scholar 

  • Sutherland JB, Rafii F, Khan A, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE (eds) Microbial transformations and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 269–306

    Google Scholar 

  • Thakker GD, Evans CS, Rao KK (1992) Purification and characterisation of laccase from Monocillium indicum Saxena. Appl Microbiol Biotechnol 37:321–323

    Article  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosporium Burds. Science 221:661–663

    Article  PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK, Bull C, Fee JA (1986) Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerochaete chrysosporium. J Biol Chem 261:1687–1693

    PubMed  CAS  Google Scholar 

  • Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol beta-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium oxidative cleavage of an alpha-carbonyl model-compound. Biochemistry 31:4986–4995

    Article  PubMed  CAS  Google Scholar 

  • Valli K, Gold MH (1991) Degradation of 2,4-Dichlorophenol by the Lignin-Degrading Fungus Phanerochaete chrysosporium. J Bacteriol 1:345–352

    Google Scholar 

  • Volc J, Kubatova E, Daniel G, Prikrylova V (1996) Only C-2 specific glucose oxidase activity is expressed in ligninolytic cultures of the white rot fungus Phanerochaete chrysosporium. Arch Microbiol 165:421–424

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Akileswaran L, Gold MH (1988) Manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: spectral characterization of the oxidized states and the catalytic cycle. Biochemistry 27:5365–5370

    Article  PubMed  CAS  Google Scholar 

  • Wariishi H, Dunford HB, MacDonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium: transient-state kinetics and reaction mechanism. J Biol Chem 264:3335–3340

    PubMed  CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium: kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    PubMed  CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleitner JA, Sundaram UM, Solomon EI (1996) A study of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    Article  PubMed  Google Scholar 

  • Yaver DS, Berka RM, Brown SH, Xu F (2001) Cloning, characterisation, expression and commercialisation of fungal laccases. In: 8th symposium on recent advances in lignin biodegradation and biosynthesis

    Google Scholar 

  • Zouari H, Labat M, Sayadi S (2002) Degradation of 4-chlorophenol by the white rot fungus Phanerochaete chrysosporium in free and immobilized cultures. Bioresour Technol 84:145–150

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhsin Konuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korcan, S.E., Ciğerci, İ.H., Konuk, M. (2013). White-Rot Fungi in Bioremediation. In: Goltapeh, E., Danesh, Y., Varma, A. (eds) Fungi as Bioremediators. Soil Biology, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33811-3_16

Download citation

Publish with us

Policies and ethics