Skip to main content

Development of Concept Analysis and Multi-Objective Optimization Platform for Body-In-White Structure

  • Conference paper
  • First Online:
Proceedings of the FISITA 2012 World Automotive Congress

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 195))

Abstract

To achieve the integrated control of body-in-white (BIW) performance at the concept design stage, several parametrical optimization technologies are proposed in this paper in seeking lightweight, stiffness and crashworthiness targets. A professional platform—Concept Analysis and Multi-objective Optimization (CAMO) is developed, which has the capability of the rapid reduction, parametrical simulation and optimization. The optimization algorithms database is developed based on. NET framework to ensure the global convergence and robustness of the optimal results. The theories discussed in the paper are great help of the concept design process improvement, body database development and knowledge utilization.

F2012-E03-046

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishigaki H, Nishiwaki S, Amago T et al (2001) First order analysis—new CAE tools for automotive body designers. SAE World Congress, Detroit

    Book  Google Scholar 

  2. Kunishi D, Kikuchi N (2004) Analysis of FEM results based upon FOA. SAE Technical Paper Series, 2004-01-1729

    Google Scholar 

  3. Zimmer H, Umlauf U, Thompson J (2000) Use of SFE CONCEPT in developing FEA models without CAD. SAE Technical Paper Series, 2000-01-2706

    Google Scholar 

  4. Volz K, Frodl B, Dirschmid F et al (2007) Optimizing topology and shape for crashworthiness in vehicle product development. International Automotive Body Congress (IABC), Berlin

    Google Scholar 

  5. Hou WB, Hu P, Liu DY et al (2006) Knowledge embedded tool for vehicle body conceptual design (IVCD). J Jilin Univ (Eng Technol Ed) 36(5):814–818

    Google Scholar 

  6. Hou WB, Zhang HZ, Chi RF et al (2009) Development of an intelligent CAE system for auto-body concept design. Int J Automot Technol 10(2):175–180

    Article  Google Scholar 

  7. Xu T, Zuo WJ, Ju W et al (2010) Simplified joint model established by rigid beam and spring elements in car body structure. J Wuhan Univ Technol 32(6):98–102

    Google Scholar 

  8. Li YW, Xu T, Zuo WJ (2010) Topology optimization design of T-joints in concept autobody. J Jilin Univ (Eng Technol Ed) 40(2):351–356

    MathSciNet  MATH  Google Scholar 

  9. Zuo WJ, Li WW, Xu T et al (2011) A complete development process of finite element software for body-in-white structure with semi-rigid beams in.NET framework. Adv Eng Softw. doi:10.1016/j.advengsoft.2011.10.005

    Google Scholar 

  10. Huang JL, Lou YQ, Gong LZ (2000) Joint modeling method in the concept model of car body structure. Chinese J Mech Eng 36(3):78–81

    Article  MATH  Google Scholar 

  11. Panayirci HM, Pradlwarter HJ, Schueller GI (2011) Efficient stochastic structural analysis using Guyan reduction. Adv Eng Softw 42(4):187–196

    Article  MATH  Google Scholar 

  12. Xu T, Zuo WJ, Xu TS et al (2010) Parameter optimization of cross section with multiple variables for the frame structure of conceptual car body. Automot Eng 32(5):394–398

    Google Scholar 

  13. Li YW, Xu T, Zuo WJ et al (2009) Modification method of autobody structure model based on relative sensitivity. J Jilin Univ (Eng Technol Ed) 39(6):1435–1440

    Google Scholar 

  14. Kirsch U, Papalambros PY (2001) Exact and accurate reanalysis of structures for geometrical changes. Eng Comput 17(4):363–372

    Article  MATH  Google Scholar 

  15. Xu T, Zuo WJ, Xu TS et al (2010) An adaptive reanalysis method for genetic algorithm with application to fast truss optimization. Acta Mech Sin 26(2):225–234

    Article  MathSciNet  Google Scholar 

  16. Zuo WJ, Xu T, Zhang H et al (2011) Fast structural optimization with frequency constraints by genetic algorithm using adaptive eigenvalue reanalysis methods. Struct Multi Optim 43(6):799–810

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Li, H., Pan, Z., Xu, T. (2013). Development of Concept Analysis and Multi-Objective Optimization Platform for Body-In-White Structure. In: Proceedings of the FISITA 2012 World Automotive Congress. Lecture Notes in Electrical Engineering, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33835-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33835-9_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33834-2

  • Online ISBN: 978-3-642-33835-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics