Skip to main content

Interpretation of Thermal Measurements

  • Chapter
  • First Online:
Applied Geothermics

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

  • 1913 Accesses

Abstract

Measurements of a number of thermal parameters [e.g., temperature (T), the geothermal gradient (G or Γ), heat flow (Q or q), heat generation (A or H), heat conductivity (λ or κ), heat capacity (c) and heat diffusivity (a)], interpretation of thermal measurements and analysis of thermal regime of different layers of Earth (e.g., crust and lithosphere) are among the main tasks of geothermics. Since temperature (T) is one of the key parameters used in thermodynamics, correct determination of temperature at any depth within the Earth where it cannot be measured is an extremely important problem. Thermodynamic regime is also important for analysis of conditions for generation and preservation of oil and gas fields, as well as such events as metamorphism and volcanism as well as many other processes. The development of a geothermal model of the medium, methods of geothermal regime analysis, problems of heat absorption in the Earth's strata and theory of heat absorption are discussed. It is shown that advanced methods developed in magnetic prospecting may be applied for quantitative interpretation of thermal anomalies. The Chapter is finalized by considering the models of strongly nonlinear thermal phenomena and thermal precursors of earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aliev SA, Rustamov RI (1977) Geothermal characteristics of the Azerbaijan’s part of the Kura Depression. Oil Gas Geol Geophys (Neftegazovaya Geologiya i Geofizika) 4:17–19 (in Russian)

    Google Scholar 

  • Allen PA, Allen JR (1990) Basin analysis: principles and applications. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Andrews-Speed CP, Oxbu ER (1984) Temperatures and depth-dependent heat flow in Western North Sea. AAPG Bull 68(11):1764–1781

    Google Scholar 

  • Ashirov T, Dubrovskiy VG, Odekov OA, Smirnov YB (1976) Geothermal conditions in Probalkhan depression. In: Geothermal researches in the USSR, vol 1. Nauka, Moscow, pp 59–64 (in Russian)

    Google Scholar 

  • Avetis’yantz AA (1979) Geothermic conditions of entrails of Armenia. Nauka, Moscow, 76 p (in Russian)

    Google Scholar 

  • Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge

    Google Scholar 

  • Beck C, Schlögl F (1995) Thermodynamics of chaotic systems: an introduction. Cambridge nonlinear science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Behar F, Beaumont V, De Penteado HLB (2001) Rock-Eval 6 technology: performances and developments technologie Rock-Eval 6: performances et développements. Oil Gas Sci Technol: Rev IFP 56(2):111–134

    Google Scholar 

  • Bercovici D, Kelly A (1997) Nonlinear initiation of diapirs and plume heads. Phys Earth Planet Inter 101:119–130

    Article  Google Scholar 

  • Bonner JK, Blackwell, DD (1998) Temperatures and earthquakes in California. In: Proceedings of the international conference “The Earth’s Thermal Field and Related Research Methods”, Moscow, Russia, pp 41–46

    Google Scholar 

  • Borevsky L, Milanovsky S, Yakovlev L (1995) Fluid-thermal regime in the crust-superdeep drilling data. In: Proceedings of the World geothermal congress, Florence, 1995, pp 975–981

    Google Scholar 

  • Bouzat S, Wio HS (1998) Nonequilibrium potential and pattern formation in a three-component reaction-diffusion system. Phys Lett A 247:297–302

    Article  Google Scholar 

  • Bulashevich YP (1980) One dimentional heat flow counting convection. Transaction of the conference “Present condition of methodics and devices for geothermal researches”, Sverdlovsk, IVC PGO “UralGeology”, pp 4–6 (in Russian)

    Google Scholar 

  • Cacace M, Scheck-Wenderoth M (2010) Modeling the thermal field and the impact of salt structures in the north east German Basin. Proceedings of the World geothermal congress 2010, Bali, Indonesia, pp 1–8

    Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Chen W, Molnar P (1983) Focal depths of intracontinental earthquakes and intraplate earthquakes and their correlation with heat flow and tectonic age. J Geophys Res 88:4183–4214

    Article  Google Scholar 

  • Cheremensky GA (1977) Applied geothermics. Nedra, Leningrad (in Russian)

    Google Scholar 

  • Clark SP Jr, (ed) (1966) Handbook of physical constants (revised edition). Geological Society of America, Memoir 97, Washington DC

    Google Scholar 

  • Clauser C (2006) Geothermal energy. In: Heinloth K (ed), Landolt-Börnstein, Group VIII: advanced materials and technologies, vol 3. Energy technologies, subvol. C: renewable energies. Springer, Heidelberg-Berlin, pp 493–604

    Google Scholar 

  • Combs J (1980) Heat flow in the Coso geothermal area, Inyo County, California. J Geophys Res 85(B5):2411–2424

    Article  Google Scholar 

  • Costain JK, Speer JA, Glover L III, Perry L, Dashevsky S, McKinney M (1986) Heat flow in the Piedmont and Atlantic Coastal Plain of the southeastern United States. J Geophys Res 91(B2):2123–2136

    Article  Google Scholar 

  • Deffeyes KS (2005) Beyond oil: the view from Hubbert’s Peak. Hill and Wang, New York

    Google Scholar 

  • Diaz JI (1985) Nonlinear partial differential equations and free boundaries, I: elliptic equations. Res notes in Mathematics, vol 106. Pitman, New York

    Google Scholar 

  • Einav S, Eppelbaum L, Kardashov V (2006) Structural control of transient waves in strongly nonlinear reaction-diffusion systems. Transaction of the international congress of mathematics, Madrid, Spain, pp 151–152

    Google Scholar 

  • Eppelbaum LV (1989) The development of methods for processing and interpretation of natural geophysical fields in prospecting for pyrite ores under mountainous conditions. Ph.D Thesis, institute of geophysics (Georgian Acadamey of Sciences), Tbilisi (in Russian)

    Google Scholar 

  • Eppelbaum LV (2009) Near-surface temperature survey: an independent tool for buried archaeological targets delineation. J Cult Heritage 12(1):e93–e103

    Google Scholar 

  • Eppelbaum LV (2013b) Non-stochastic long-term prediction model for US tornado level. Nat Hazards 1–10. doi:10.1007/s11069-013-0787-7

  • Eppelbaum LV, Kardashov VR (1998) Nonlinear geothermal processes in the Earth crust and transition waves. In: Proceedings of the international conference “The Earth’s Thermal Field and Related Research Methods”, Moscow, pp 82–85

    Google Scholar 

  • Eppelbaum LV, Kardashov VR (2001) Analysis of strongly nonlinear processes in geophysics. In: Moresi L, Müller D (eds) Proceedings of the Chapman conference on exploration geodynamics. Dunsborough, Western Australia, pp 43–44

    Google Scholar 

  • Eppelbaum LV, Khesin BE (2012) Geophysical studies in the Caucasus. Springer, Berlin

    Google Scholar 

  • Eppelbaum LV, Pilchin AN (2006) Methodology of Curie discontinuity map development for regions with low thermal characteristics: an example from Israel. Earth Planet Sci Lett 243(3–4):536–551

    Article  Google Scholar 

  • Eppelbaum LV, Modelevsky MM, Pilchin AN (1996) Geothermal investigations in the Dead Sea Rift zone, Israel: implications for petroleum geology. J Petrol Geol 19(4):425–444

    Article  Google Scholar 

  • Eppelbaum LV, Kutasov IM, Barak G (2006) Ground surface temperature histories inferred from 15 boreholes temperature profiles: Comparison of two approaches. Earth Sci Res J 10(1):25–34

    Google Scholar 

  • Forsythe GE, Wasow WR (1960) Finite difference methods for partial differential equations. Wiley, New York

    Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Statist 19:1–144

    Article  Google Scholar 

  • Galushkin YI (1990) Thermal regime and location of zones for hydrocarbon generation during basin evolution: description of the methods and computer program. In: Ushakov SA (ed) Earth life, evolution of Earth and planets. Moscow University Press, Moscow, pp 102–108 (in Russian)

    Google Scholar 

  • Grimshaw R, Pelinovsky E, Tanpova T (1997) The modified Korteweg-de Vries equation in the theory of large-amplitude internal waves. Nonlinear Process Geophys 4(4):237–250

    Article  Google Scholar 

  • Grosse P, Wynands R (1989) Simulation of photoacoustic IR spectra of multilayer structures. Appl Phys B 48:59–65

    Article  Google Scholar 

  • Helgeson HC, Richard L, McKenzie WF, Norton DL, Schmitt A (2009) A chemical and thermodynamic model of oil generation in hydrocarbon source rocks. Geochim et Cosmochim Acta 73:594–695

    Article  Google Scholar 

  • Hofmeister AM (1999) Mantle values of thermal conductivity and the geotherm from phonon lifetimes. Science 283:1699–1706

    Article  Google Scholar 

  • Hunt JM (1990) Generation and migration of petroleum from abnormally pressured fluid compartments. Am Assoc Petrol Geol 74:1–12

    Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. W.H. Freeman, San Francisco

    Google Scholar 

  • Hyne NJ (2001) Nontechnical guide to petroleum geology, exploration, drilling, and production. PennWell Corporation, Oklahoma

    Google Scholar 

  • Ismail-Zade TA, Askerov RB, Aliyev SA (1980) A method for determining crust fractures. Soviet Inventor Certificate no. 792198 MKI GOIV9/00 (in Russian)

    Google Scholar 

  • Kamin S, Vazquez JL (1991) Asymptotic behavior of solution of the porous medium equation with changing sign. SIAM J Math Anal 22(1):34–45

    Article  Google Scholar 

  • Kappelmeyer O, Hänel R (1974) Geothermics with special reference to application. Gebruder Borntrargen, Berlin—Stutgart

    Google Scholar 

  • Kardashov V (1999) Finite control of unsteady-state singular processes. Nonlinear Anal 38(3):361–374

    Article  Google Scholar 

  • Kardashov VR, Eppelbaum LV (2008) Mathematical models of strongly nonlinear geophysical phenomena. Transaction of the 5th European conference of mathematicians, Amsterdam, The Netherlands, 2 pp

    Google Scholar 

  • Kardashov V, Einav S, Eppelbaum L, Ismail-Zadeh A (1999) A novel approach to investigation and control of nonlinear nonstationary processes: application to environments and biomedical engineering. Sci Israel 3:24–33

    Google Scholar 

  • Kardashov VR, Eppelbaum LV, Vasilyev OV (2000) The role of nonlinear source terms in geophysics. Geophys Res Lett 27(14):2069–2073

    Article  Google Scholar 

  • Keilis-Borok VI (1990) The lithosphere of the earth as a nonlinear system with implications for earthquake prediction. Rev Geophys 28:19–34

    Article  Google Scholar 

  • Kerimov KM, Pilchin AN (1981) Some peculiarities of geothermal characteristic of deep seated faults of Aserbaijan. Azerbaijan Oil Ind 10:18–22 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN (1986a) Geothermal regime of the sedimentary cover of Azerbaijan and Caspian Sea depression areas. Azerbaijan Oil Ind 1:9–13 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN (1986b) Use of geothermics data for prognosis of abnormal stratum pressure and oil and gas perspectives at great depths. In: Kerimov KM (ed) Combined interpretation of geological-geophysical data with the goal to search oil and gas presence at great depths. Baku Book Publ., Baku, pp 25–36 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN (1987a) Analysis of thermo-baric conditions in oil and gas fields in depression regions of the Caucasus and Middle Asia. In: Ismail-Zade TA et al (eds) Transaction of the 2nd scien-techn meeting “Problems of Oil and Gas Production at Great Depths and Ways to Increase an Effectiveness of Investigation”. Baku Book Publ., pp 115–117 (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN (1987b) Thermo-baric regime of sedimentary layer of the South-Caspian Mega-depression and its relation with oil and gas prospecting. In: Neprochnov YP et al (eds) Problems of geophysics of Ocean’s bottom, transaction of 1st All-Union meeting on marine geophysics, Moscow, vol 2, p 93

    Google Scholar 

  • Kerimov KM, Pilchin AN, Ibragimov SM et al (1986) Improvement of prognosis methods and overhigh stratum pressure zones study in foothills and interhills depressions of the South USSR in connection with search and prospecting of oil and gas at the great depths. Scientific report 363-85, Baku, YuzhVNIIGeofizika, 289 p (in Russian)

    Google Scholar 

  • Kerimov KM, Andreev LI, Pilchin AN et al (1988) Development of the combined geological and geophysical model of the Earth crust of the Caucasus. Scientific report 002-1, Baku, YuzhVNIIGeofizika, 400 p (in Russian)

    Google Scholar 

  • Kerimov KM, Pilchin AN, Gadzhiev TG, Buachidze GY (1989) Geothermal map of the Caucasus, Scale 1:1,000,000, Baku, Cartographic Plant no. 11 (in Russian)

    Google Scholar 

  • Khesin BE, Eppelbaum LV (1994) Near-surface thermal prospecting: Review of processing and interpretation. Geophysics 59(5):744–752

    Article  Google Scholar 

  • Khesin BE, Alexeyev VV, Eppelbaum LV (1996) Interpretation of geophysical fields in complicated environments. Series: modern approaches in geophysics. Kluwer Academic Publishers (Springer), Boston, Dordrecht, London

    Google Scholar 

  • Kosevich AM, Kovalev AS (1989) Introduction to nonlinear physical mechanics. Naukova Dumka, Kiev

    Google Scholar 

  • Krupsky D, Ismail-Zadeh A, Wilhelm H, Volozh Y (2006) Geothermal evolution of the Astrakhan Crest region of the Pricaspian Basin, Russia. In: Recent geodynamics, Georisk and sustainable development in the Black Sea to Caspian Sea region. AIP conference proceeding, vol 825(1), pp 120–131

    Google Scholar 

  • Kutas RI (1978) Field of heat flows and thermal model of Earth Crust. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Kutas RI, Gordienko VV (1971) Heat flow of the Ukraine. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Kutas RI, Bevzyuk MI, Vigovsky VF, Mikhaylyuk SF (1979) Investigation of geologic origin of heat field heterogeneities. Report on problem no. 39-76-102/3. Institute of Geophysics, Ukrainian Academy of Science, Kiev (in Russian)

    Google Scholar 

  • Kutasov IM (1999) Applied geothermics for petroleum engineers. Elsevier, Amsterdam

    Google Scholar 

  • Lachenbruch AH (1959) Periodic heat flow in a stratified medium with application to permafrost problems. Geol Surv Bull 1083-A (USA Government Printing Office, Washington)

    Google Scholar 

  • Lachenbruch AH, Sass JH, Galanis SP Jr (1985) Heat flow in southernmost California and the origin of the Salton Trough. J Geophys Res 90:6709–6736

    Article  Google Scholar 

  • Lakhtionov MO, Tarkhov AG (1967) Experience in thermal prospecting at pyrite deposits of the Urals. Izv VUZOV, Ser: Geol Prospect 5:87–94 (in Russian)

    Google Scholar 

  • Lévy F, Jaupart C, Mareschal J-C, Bienfait G, Limare A (2010) Low heat flux and large variations of lithospheric thickness in the Canadian Shield. J Geophys Res 115:B06404

    Google Scholar 

  • Lopatin NV (1971) Temperature and geologic time as a factor in coalification. Izv Acad Sci USSR, Ser: Geol 3:95–106

    Google Scholar 

  • Lubimova EA (1956) Influence of radioactive sources redistribution on heat history of Earth. Izv Acad Sci USSR, Ser: Geophys 10:1145–1160 (in Russian)

    Google Scholar 

  • Lubimova EA, Mukhtarov ASh, Ismail-Zadeh, TA (1982) Temperature variations in the “Biladzhik” drill hole (Azerbaijan) during regional seismic activity. Izvestiya, Phys of the Earth 21(4):319–322

    Google Scholar 

  • Lubimova EA (1968a) Thermal history of the Earth. In: The Earth’s crust and upper mantle, vol 13. Geophysical Monograph Series. American Geophysical Union, pp 63–77

    Google Scholar 

  • Lubimova EA (1968b) Thermics of the Earth and Moon. Nauka, Moscow (in Russian)

    Google Scholar 

  • Main I (1996) Statistical physics, seismogenesis and seismic hazard. Rev Geophys 34:433–462

    Article  Google Scholar 

  • Majorowicz JA, Jones FW, Jessop AM (1986) Geothermics of the Williston basin in Canada in relation to hydrodynamics and hydrocarbon occurrences. Geophysics 51:767–779

    Article  Google Scholar 

  • Maky AF, Ramadan MAM (2010) Thermal conductivity, radiogenic heat production and heat flow of some upper cretaceous rock units, North Western Desert, Egypt. J Appl Sci Res 6(5):483–510

    Google Scholar 

  • McGahan WA, Cole KD (1992) Solutions of the heat conduction equation in multilayers for photothermal deflection experiments. Mechanical Engineering Faculty of Public. University of Nebraska, Lincoln

    Google Scholar 

  • Mekhtiev SF, Kashkay MA, Aliev SA (1972) Investigation of relationships of heat flow with construction and evolution tectonic structure and geophysical fields in different tectonic structures of USSR. (Pre-Kura Oil and Gas Province, Apsheron Oil and Gas Province). Scientific report for 1971–1972. Azerbaijan Geological Fund, Baku

    Google Scholar 

  • Mogi K, Mochizuki H, Kurokawa Y (1989) Temperature changes in an artesian spring at Usami in the Izu peninsula (Japan) and their relation to earthquakes. Tectonophysics 159:95–108

    Article  Google Scholar 

  • Mottaghy D, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401:119–142

    Article  Google Scholar 

  • Nabighian MN (1972) The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: its properties and use for automated anomaly interpretation. Geophysics 37(3):507–517

    Article  Google Scholar 

  • Natale G, Salusti E (1996) Transient solutions for temperature and pressure waves in fluid-saturated porous rocks. Geophys J Int 124:649–656

    Article  Google Scholar 

  • Naudy H (1970) Une methode d’analyse fine des profiles aeromagnetiques. Geophys Prospect 18:56–63

    Article  Google Scholar 

  • Nayfeh AN (1973) Perturbation methods. Wiley, Toronto

    Google Scholar 

  • Negi JG, Singh RN (1967) On heat transfer in layered ocean sediments. Earth planet Sci Lett 2:335–336

    Article  Google Scholar 

  • Newman WI, Gabrielov A, Turcotte DL (eds) (1994) Nonlinear dynamics and predictability of geophysical phenomena, vol 83. AGU Press (Geoph Monogr)

    Google Scholar 

  • Nielsen SB, Balling N (1985) Transient heat flow in a stratified medium. Tectonophysics 121(1):1–10

    Article  Google Scholar 

  • Noda H, Dunham EM, Rice JR (2009) Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J Geophys Res 114:B07302, 1–27. doi:10.1029/2008JB006143

  • Oba M, Mita H, Shimoyama A (2002) Determination of activation energy and pre-exponential factor for individual compounds on release from kerogen by a laboratory heating experiment. Geochem J 36:51–60

    Article  Google Scholar 

  • Ouyang Z, Zhang H, Fu Z, Gou B, Jiang W (2009) Abnormal phenomena recorded by several earthquake precursor observation instruments before the M s 8.0 Wenchuan, Sichuan earthquake. Acta Geol Sinica 83(4):834–844

    Article  Google Scholar 

  • Ouzounov D, Freund F (2004) Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv Space Res 33:268–273

    Article  Google Scholar 

  • Parasnis DS (1997) Principles of applied geophysics (revised and supplumented), 5th edn. Chapman & Hall, London

    Google Scholar 

  • Peters KE (1986) Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bull 70(3):318–329

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide: biomarkers and isotopes in the environment and human history, 2nd edn, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Petersen K, Lerche I (1995a) Quantification of thermal anomalies in sediments around salt structures. Geothermics 24(2):253–268

    Article  Google Scholar 

  • Petersen K, Lerche I (1995b) Quantitative modelling of salt and sediment interactions: evolution of a North Louisiana salt diapir. J Petrol Geol 18(4):365–396

    Article  Google Scholar 

  • Pilchin AN (1978) Estimation of thermodynamic condition of intervals of terrigenous transsection by speed of change of geothermal gradient with depth. Explor Geophys (Razvedochnaya Geofizika) 83:112–116

    Google Scholar 

  • Pilchin AN (1979) On heat absorption in the earth strata (on example of the Middle Kura Depression), VINITI Press No. 183-79, p 21 (in Russian)

    Google Scholar 

  • Pilchin AN (1981) Influence of additional pressure on seismic velocity and density of rocks in Middle-Kura depression. Explor Geophys (Razvedochnaya Geofizika) 91:122–127 (in Russian)

    Google Scholar 

  • Pilchin A (1983) Geothermal regime of Earth’s crust of the Kura depression and its influence on pressure distribution in it. Ph.D. thesis, Institute of Geophysics of the Georg. Academy of Science, Tbilisi (in Russian)

    Google Scholar 

  • Pilchin AN (1987a) Analysis of thermo-baric conditions in oil and gas fields of the Urals-Povolzhie and Siberia. In: Ismail-Zade TA et al (eds) Transaction of II scien-techn meeting problems of oil and gas production at great depths and ways of increase of effectiveness of prospecting, pp 108–110

    Google Scholar 

  • Pilchin AN (1995a) Heat absorption in sedimentary cover in some areas of the USA and Canada. AAPG search and discovery article #90957, AAPG Mid-Continent section meeting, Tulsa, Oklahoma

    Google Scholar 

  • Pilchin AN (1995b) The geothermal state of sedimentary cover of South and Central Alberta, vol 20. Transaction of Geological Association of Canada and Mineral. Association of Canada Annual Meeting, p 84

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (1994a) Comparison of thermodynamic conditions between Salton Trough region (USA) and the region of the Dead Sea Rift. Transaction of VII European geoscience conference, Strasbourg, France, C1, p 174

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (1994b) Los Angeles Basin and South part of the Dead Sea Basin: comparative analysis and possible character of origin. Transaction of the 90th annual meeting of Cordilleran Section of the Geological Society of America, p 81

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (1997) Determination of the lower edges of magnetized bodies by using geothermal data. Geophys J Int 128:167–174

    Article  Google Scholar 

  • Pilchin AN, Kerimov KM (1980) Some peculiarities of thermal regime of central part of Kura depression. Oil Gas Geol Geophys (Neftegazovaya Geologiya i Geofizika) 4:23–25 (in Russian)

    Google Scholar 

  • Pilchin AN, Kerimov KM (1987) Prognosis of temperatures and pressures at in depth intervals not uncovered by drilling in oil and gas fields of Azerbaijan using seismic data. In: Kerimov KM (ed) Prognosis of oil and gas fields presence by methods of exploration geophysics, Baku, vol 3, pp 55–61

    Google Scholar 

  • Pilchin AN, Khesin BE, Kerimov KM (1978) Geothermal regime of sedimentary cover of Kura Depression. Geol Oil Gas (Geologiya Nefti i Gaza) 8:46–49 (in Russian)

    Google Scholar 

  • Poley JP, Steveninck JV (1970) Delineation of shallow salt domes and surface faults by temperature measurements at a depth of approximately 2 m. Geophys Prospect 18:666–700

    Article  Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306(3–4):345–366

    Article  Google Scholar 

  • Powell WG, Chapman DS (1990) A detailed study of heat flow at the Fifth Water Site, Utah, in the Basin and Range-Colorado Plateaus transition. Tectonophysics 176(3–4):291–314

    Article  Google Scholar 

  • Price LC (1999) Organic metamorphism in the California petroleum basins: chapter B—Insights from extractable bitumen and saturated hydrocarbons. US Geol Surv Bull 2174-B

    Google Scholar 

  • Price LC, Daws T, Pawlewicz M (1999) Organic metamorphism in the California Petroleum Basins: chapter A—Rock-Eval and vitrinite reflectance. US Geol Surv Bull 2174-A

    Google Scholar 

  • Pulinets SA, Ouzounov D, Karelin AV, Boyarchuk KA, Pokhmelnykh LA (2006) The physical nature of thermal anomalies observed before strong earthquakes. Phys Chem Earth 31:143–153

    Article  Google Scholar 

  • Rao DA, Babu HV (1984) On the half-slope and straight-slope methods of basement depth determination. Geophysics 49:1365–1368

    Article  Google Scholar 

  • Resapour N, Bidokhti AA, Fattahi M (2008) Thermal properties of the ground as an earthquake precursor. Transaction of the 2nd IASME /WSEAS international conference on geology and seismology, Cambridge, 23–25 Feb 2008, pp 63–65

    Google Scholar 

  • Rosenau P, Hyman JM (1993) Compactons: solitons with finite wavelength. Phys Rev Lett 70(5):564–567

    Article  Google Scholar 

  • Rowlands G (1995) Non-linear phenomena in science and engineering. Ellis Horwood, West Sussex

    Google Scholar 

  • Rybach L, Muffer LJP (1981) Geothermal systems: principles and histories. Wiley, Chichester

    Google Scholar 

  • Sajgó C (2000) Assessment of generation temperatures of crude oils. Organ Geochem 31:1301–1323

    Article  Google Scholar 

  • Salman AG, Tronon AA (1990) Variations of Earth infrared outgoing flow in seismically active regions of the Middle Asia. Izv Russ Acad Sci, Phys Earth 7:67–69

    Google Scholar 

  • Sass JH, Lachenbruch AH (1982) Preliminary interpretation of thermal data from the Nevada test site. Open-file report 82-973, US Geological Survey, Menlo Park

    Google Scholar 

  • Sass JH, Morgan P (1988) Conductive heat flux in VC-1 and the thermal regime of Valles Caldera, Jemez Mountains, New Mexico. J Geophys Res 93(B6):6027–6039

    Article  Google Scholar 

  • Sass JH, Priest SS, Duda LE, Carson CC, Hendricks JD, Robison LC (1988) Thermal regime of the State 2–14 well, Salton Sea Scientific Drilling Project. J Geophys Res 93(B11):12995–13004

    Article  Google Scholar 

  • Sawyer DS, Hsui AT, Toksoz MN (1987) Extension, subsidence and thermal evolution of the Los Angeles Basin—a two-dimensional model. Tectonophysics 133(1–2):15–32

    Article  Google Scholar 

  • Schwab KW (1977) Source rock evaluation (visual kerogen). Geo-Strat Inc., Comm, Brochure, Houston

    Google Scholar 

  • Sharma PV (2002) Environmental and engineering geophysics. Cambridge University Press, Cambridge

    Google Scholar 

  • Sibson R (1984) Roughness at the base of the seismogenic zone: contributing factors. J Geophys Res 89:5791–5799

    Article  Google Scholar 

  • Simmons G (1967) Interpretation of heat flow anomalies. Rev Geophys 5(2):42–52

    Article  Google Scholar 

  • Singh RP, Dey S (2003) Surface latent heat flux as an earthquake precursor. Nat Hazards Earth Syst Sci 3:749–755

    Article  Google Scholar 

  • Speece MA, Bowen TD, Folcik JL, Pollack HN (1985) Analysis of temperatures in sedimentary basins: the Michigan Basin. Geophysics 50(8):1318–1334

    Article  Google Scholar 

  • Staplin FL (1969) Sedimentary organic matter, organic metamorphism, and oil and gas occurrence. Canad Petrol Geol Bull 17(1):47–66

    Google Scholar 

  • Starin L, Yuen DA, Bergeron Y (2000) Thermal evolution of sedimentary basin formation with variable thermal conductivity. Geophys Res Lett 27(2):265–268

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tikhonov AN (1937) On influence of radioactive decay on the earth crust temperature. Izv Acad Sci USSR, Ser Geogr Geophys 3:431–458

    Google Scholar 

  • Tikhonov AN, Samarsky AA (1963) Equations of mathematical physics. Pergamon Press. Oxford

    Google Scholar 

  • Tikhonov AN, Dmitriev VI, Glasko VV (1983) Mathematical methods in prospecting for useful minerals. Znanie (in Russian)

    Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence. Springer, Berlin

    Book  Google Scholar 

  • Tissot BP, Pelet R, Ungerer P (1987) Thermal history of sedimentary basins, maturation indices, and kinetics of oil and gas generation. AAPG Bull 71:1445–1466

    Google Scholar 

  • Tongiorgi E (ed) (1975) Study and use of geothermal resources. Mir, Moscow (in Russian)

    Google Scholar 

  • Tramutoli V, DiBello G, Pergola N, Piscitelli S (2001) Robust satellite techniques for remote sensing of seismically active areas. Ann Geophys 44:295–312

    Google Scholar 

  • Tronin AA, Biagi PF, Molchanov OA, Khatkevich YM, Gordeev EI (2004) Temperature variations related to earthquakes from observation at the ground stations and by satellites in Kamchatka area. Phys Chem Earth 29:501–506

    Article  Google Scholar 

  • Tucker ME (2001) Sedimentary petrology, 3rd edn. Blackwells, Oxford

    Google Scholar 

  • Turcotte DL (1995) Chaos, fractals, nonlinear phenomena in Earth sciences. Rev Geophys 341–343

    Google Scholar 

  • Valentine GA, Zhang D, Robinson BA (2002) Modeling complex, nonlinear geological processes. Ann Rev Earth Planet Sci 30:35–64

    Article  Google Scholar 

  • Vasilyev OV, Yuen DA, Poladchikov YuYu (1997) Applicability of wavelet algorithm for geophysical viscoelastic flow. Geophys Res Lett 24(23):3097–3100

    Article  Google Scholar 

  • Wang Y, Zhang S, Wang F, Wang Z, Zhao C, Wang H, Liu J, Lu J, Geng A, Liu D (2006) Thermal cracking history by laboratory kinetic simulation of Paleozoic oil in eastern Tarim Basin, NW China, implications for the occurrence of residual oil reservoirs. Org Geochem 37:1803–1815

    Article  Google Scholar 

  • Waples DW (1980) Time and temperature in petroleum formation: application of Lopatim’s method to petroleum exploration. AAPG Bull 64:916–926

    Google Scholar 

  • Wei Z, Moldowan JM, Zhang S, Hill R, Jarvie DM, Wang H, Song F, Fago F (2007) Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: geochemical models from hydrous pyrolysis. Organ Geochem 38:227–249

    Article  Google Scholar 

  • Westbrook GK, Carson B, Shipboard Scientific Party (1994) Summary of Cascadia drilling results. In: Westbrook GK, Carson B, Musgrave RJ et al. (eds) Proceedings of the Ocean Drilling Program. Initial reports, vol 146 (Part 1), Chap. 9, pp 389–396

    Google Scholar 

  • Wheatcraft SW, Gushman JH (1991) Hierarchical approaches to transport in heterogeneous porous media. Rev Geophys 3:263–269

    Google Scholar 

  • Wold S (1974) Spline functions in data analysis. Technometrics 16:1–11

    Article  Google Scholar 

  • Zorin YA, Lysak SV (1972) Quantitative interpretation of geothermal anomalies. Izv Acad Nauk SSSR, Ser Fizika Zemli 9:68–73 (in Russian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Eppelbaum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eppelbaum, L., Kutasov, I., Pilchin, A. (2014). Interpretation of Thermal Measurements. In: Applied Geothermics. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34023-9_7

Download citation

Publish with us

Policies and ethics