Skip to main content

An Efficient ID-Based Directed Signature Scheme from Optimal Eta Pairing

  • Conference paper
Computational Intelligence and Intelligent Systems (ISICA 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 316))

Included in the following conference series:

Abstract

A directed signature scheme allows a designated verifier to directly verify a signature issued to him, and a third party to check the signature validity with the help of the signer or the designated verifier as well. In this paper, starting from the Vercauteren’s work on optimal pairings, we describe how to exploit the action of the 23mth power Verschiebung in order to reduce the loop length of Miller’s algorithm even further brief than the genus − 2η T approach. At the same time, we propose an efficient identity-based directed signature scheme from Optimal Eta Pairing on Supersingular Genus-2 Binary Hyperelliptic Curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  2. Sun, X., Li, J.-H., Chen, G.-L., Yung, S.-T.: Identity-Based Directed Signature Scheme from Bilinear Pairings, http://eprint.iacr.org/2008/305.pdf

  3. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Identification and Signature Schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Libert, B., Quisquater, J.J.: The exact security of an Identity based signature and its applications, http://eprint.iacr.org/2004/102

  5. Zhang, J., Yang, Y., Niu, X.: Efficient Provable Secure ID-Based Directed Signature Scheme without Random Oracle. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009, Part III. LNCS, vol. 5553, pp. 318–327. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Miller, V.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–261 (2004)

    Article  MATH  Google Scholar 

  8. Hess, F.: Efficient identity based signature schemes based on pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Barreto, M., et al.: Efficient pairing computation on supersingular Abelian varieties. Des. Codes Crypt. 42, 239–271 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hess, F., Smart, N., Vercauteren, F.: The Eta pairing revisited. IEEE Trans. Inf. Theory 52(10), 4595–4602 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Granger, R., Hess, F., Oyono, R., Thériault, N., Vercauteren, F.: Ate Pairing on Hyperelliptic Curves. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 430–447. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Hess, F.: Pairing Lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Galbraith, S., Paterson, K., Smart, N.: Pairings for cryptographers. Discrete Applied Mathematics 156, 3113–3121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Menezes, A., Okamoto, T., Vanstone, S.: Reducing elliptic curves logarithms to logarithms in a finite field. IEEE Trans. Inf. Theory 39(5), 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Aranha, D.F., López, J., Hankerson, D.: High-Speed Parallel Software Implementation of the η_T Pairing. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 89–105. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Galbraith, S.D.: Supersingular Curves in Cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)

    Article  MathSciNet  Google Scholar 

  19. Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Math. Comput. 48(177), 95–101 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ku, J., Yun, D., Zheng, B., Wei, S. (2012). An Efficient ID-Based Directed Signature Scheme from Optimal Eta Pairing. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds) Computational Intelligence and Intelligent Systems. ISICA 2012. Communications in Computer and Information Science, vol 316. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34289-9_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34289-9_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34288-2

  • Online ISBN: 978-3-642-34289-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics