Skip to main content

Aufbau und Stoffbestand des Mondes

  • Chapter
  • First Online:
Mineralogie

Part of the book series: Springer-Lehrbuch ((SLB))

Zusammenfassung

Der Mond umkreist die Erde in einer Entfernung von durchschnittlich 384400 km. Er besitzt einen Radius von 1738 km (ca. ¼ des Erdradius); seine mittlere Dichte beträgt nur 3,34 g/cm2, ist also wesentlich geringer als die der Erde. Schon die unbemannten Weltraum-Missionen der UdSSR (Lunik seit 1959) und der USA (Ranger und Surveyor seit 1964) haben grundlegende Erkenntnisse über den Aufbau des Mondes und die petrographische Zusammensetzung der Mondoberfläche erbracht. Von unschätzbarem Wert für die geologische Erforschung waren die bemannten Apollo-Missionen der USA, die erstmals eine direkte Probenahme und geophysikalische Experimente auf der Mondoberfläche erlaubten. Die Apollo- 11-Astronauten Neil Armstrong und Edwin Aldrin betraten am 20. Juli 1969 als erste Menschen den Mond. Im Zuge der Apollo-Missionen 11 bis 17 und der sowjetischen Luna-Missionen 16, 20 und 24 wurden zwischen 1969 und 1976 insgesamt fast 2 200 Gesteinsproben mit einem Gesamtgewicht von über 380 kg auf dem Mond gesammelt (Taylor 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Beatty JK, Petersen CC, Chaikin A (eds) (1999) The new solar system. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Delano JW (2009) Scientific exploration of the Moon. Elements 5:11–16

    Article  Google Scholar 

  • Ernst EL, Buchan KL, Campbell IH (2005) Frontiers in Large Igneous Province research. Lithos 79: 271–297

    Article  Google Scholar 

  • Grove TL, Krawczynski MJ (2009) Lunar mare volcanism: Where did the magmas come from? Elements 5:29–34

    Article  Google Scholar 

  • Hartmann WK, Phillips RJ, Taylor CJ (eds) (1986) Origin of the Moon. Lunar and Planetary Institute, Houston, Texas

    Google Scholar 

  • Jolliff BL, Wieczorek MA, Shearer CK, Neal CR (eds) (2006) New views of the Moon. Rev Mineral Geochem 60

    Google Scholar 

  • Lucey PG (2009) The poles of the Moon. Elements 5:41–46

    Article  Google Scholar 

  • Mason B, Melson WG (1970) The lunar rocks. Wiley-Interscience, New York

    Google Scholar 

  • Neal CR (2009) The Moon 35 years after Apollo: What’s left to learn? Chem Erde 69:3–43

    Article  Google Scholar 

  • Neukum G, Ivanov BA, Hartmann WK (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Sci Rev 96:55–86

    Article  Google Scholar 

  • Norman MD (2009) The lunar cataclysm: Reality or “mythconception”? Elements 5:23–28

    Article  Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of an noritic anorthosite clast from Descartes breccia 67215: Clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38:645–661

    Article  Google Scholar 

  • Papike JJ (ed) (1998) Planetary materials. Rev Mineral 36

    Google Scholar 

  • Righter K (2007) Not so rare Earth? New developments in understanding the origin of the Earth and Moon. Chem Erde 67:179–200

    Article  Google Scholar 

  • Ringwood AE (1979) Origin of the Earth and Moon. Springer-Verlag, New York Heidelberg Berlin

    Book  Google Scholar 

  • Shearer CK, Borg LE (2006) Big return on small samples: Lessons learned from the analysis of small lunar samples and implications for the future scientific exploration of the Moon. Chem Erde 66:163–185

    Article  Google Scholar 

  • Spudis PD (1999) The Moon. In: Beatty JK, Petersen CC, Chaikin A (eds) The new solar system. Cambridge Univ Press, Cambridge, UK, pp 125–140

    Google Scholar 

  • Taylor SR (1975) Lunar Science: A post-Apollo view. Pergamon, New York

    Google Scholar 

  • Taylor SR (1982) Planetary Science: A lunar perspective. Lunar and Planetary Institute, Houston, Texas

    Google Scholar 

  • Taylor GJ (2009) Ancient lunar crust: Origin, composition, and implications. Elements 5:17–22

    Article  Google Scholar 

  • Unsöld A, Baschek B (2005) Der neue Kosmos, 7. Aufl. Korrigierter Nachdruck, Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Warren PH (2005) The Moon. In: Davis AM (ed) Meteorites, comets, and planets. Elsevier, Amsterdam Oxford, pp 559–599

    Google Scholar 

  • Wieczorek MA (2009) The interior structure of the Moon: What does geophysics have to say? Elements 5:35–40

    Article  Google Scholar 

  • Zolenski ME (2005) Extraterrestrial water. Elements 1:39–43

    Article  Google Scholar 

Zitierte Literatur

  • Alibert C, Norman MD, McCulloch MT (1994) An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58:2921–2926

    Article  Google Scholar 

  • Cameron AGW (1996) The origin of the Moon and the single impact hypothesis. Icarus 126:126–137

    Article  Google Scholar 

  • Campbell DB, Chandler JF, Hine A, et al. (2003) Radar imaging of the lunar poles. Nature 426:137–138

    Article  Google Scholar 

  • Campbell DB, Campbell BA, Carter LM, et al. (2006) No evidence for thick deposits of ice at the lunar southern pole. Nature 443:835–837

    Article  Google Scholar 

  • Colaprete A, Schultz P, Heldmann J, et al. (2010) Detection of water in the LCROSS ejecta plume. Science 330:463–468

    Article  Google Scholar 

  • Feldmann WC, Maurice S, Binder AB, et al. (1998) Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the Lunar poles. Science 281:1496–1500

    Article  Google Scholar 

  • Goins NR, Dainty A, Toksöz MN (1977) The deep seismic structure of the Moon. Proc Eigth Lunar Sci Conf 1:471–486

    Google Scholar 

  • Holl M (2010) Wasser in Apollo-Mondgesteinsproben nachgewiesen. Sterne und Weltraum 5/2010:22–23

    Google Scholar 

  • Nakamura Y (2003) New identification of deep moonquakes in the Apollo lunar seismic data. Phys Earth Planet Int 139: 197–205

    Article  Google Scholar 

  • Nakamura Y, Duennebier F, Latham G, Dorman J (1976) Structure of the lunar mantle. J Geophys Res 81:4818–4824

    Article  Google Scholar 

  • Nozette S, et al. (1994) The Clementine mission to the Moon: Scientific overview. Science 266:1835–1839

    Article  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN, et al. (2009) Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan –1. Science 326:568–572

    Article  Google Scholar 

  • Schmitt HH (1991) Evolution of the Moon: Apollo model. Am Mineral 76:773–784

    Google Scholar 

  • Schultz PH, Staid MI, Pieters CM (2006) Lunar activity from recent gas release. Nature 444:184–186

    Article  Google Scholar 

  • Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84:1469–1494

    Google Scholar 

  • Smith JV (1974) Lunar mineralogy: A heavenly detective story. Presidential address, Part I. Am Mineral 59:231–243

    Google Scholar 

  • Smith JV, Steele IM (1976) Lunar mineralogy: A heavenly detective story. Part II. Am Mineral 61:1059–1116

    Google Scholar 

  • Warren PH (1990) Lunar anorthosites and the magma-ocean plagioclase-floating hypothesis: Importance of FeO enrichment in the parent magma. Am Mineral 75:46–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Okrusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okrusch, M., Matthes, S. (2014). Aufbau und Stoffbestand des Mondes. In: Mineralogie. Springer-Lehrbuch. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34660-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34660-6_30

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34659-0

  • Online ISBN: 978-3-642-34660-6

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics