Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 867))

  • 2624 Accesses

Abstract

An efficient utilization of the numerical resources available is crucial for successful nonequilibrium Green’s function (NEGF) calculations for spatially inhomogeneous systems. Typically, the limiting factor is the computer memory. This fact has its origin in the non-Markovian structure of the Kadanoff-Baym equations which requires to remember (and hence to store) the dynamics history.

After a brief review of NEGF applications for homogeneous systems, the third chapter discusses the pros and cons of grid and basis representations of the nonequilibrium Green’s function in respect of reducing the computational effort and, in turn, of enabling larger propagation times and/or system sizes. A combination of both (grid and basis) strategies emerges as being particularly promising and advantageous. This is exemplified by using the finite element-discrete variable representation which remarkably simplifies the computation of the self-energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means, that the Green’s function (or self-energy) does not decay sufficiently fast when “looking” back into the past from the current time.

  2. 2.

    Aside from the generic two-time structure.

  3. 3.

    Note, that the correlation functions are in general complex. Assuming double precision, we need 16 bytes for a single complex number.

  4. 4.

    Potentially, including an adaptive time step size.

  5. 5.

    In Coulomb systems, the correlation time is typically of the order of τ cor≈2π|ω pl|. At weak coupling, the relaxation time of the Wigner distribution is typically significantly larger, τ relτ cor [11, 95, 123].

  6. 6.

    The resulting equations of motion for the 1pNEGF are sometimes called “generalized” Kadanoff-Baym equations, e.g., [121, 124].

  7. 7.

    In the presence of correlations, that is beyond the HF level.

  8. 8.

    Note that the runtime itself can be a bottleneck at large memory consumption as we have to account for matrix instead of scalar multiplications.

  9. 9.

    Quadratic integrability is required to well-define operator matrix elements.

  10. 10.

    Similar to methods using B-splines.

  11. 11.

    As the roots of Legendre polynomials are symmetric about x=0, the same symmetry applies to the Gauss-Lobatto points (weights) x m (w m ).

  12. 12.

    With the short-hand notation \(\delta _{mm'}^{ii'}=\delta_{ii'}\delta_{mm'}\).

  13. 13.

    The same result holds for any other operator that is local in space.

  14. 14.

    This becomes clear after a thorough analysis of Eg. (3.21).

  15. 15.

    For a spin-polarized system, we have ξ=1.

  16. 16.

    Restore all orbital indices and insert the full matrix for w (2).

References

  1. M. Bonitz, Quantum Kinetic Theory (Teubner, Stuttgart, 1998)

    Google Scholar 

  2. D. Hochstuhl, M. Bonitz, Two-photon ionization of helium studied with the multiconfigurational time-dependent Hartree-Fock method. J. Chem. Phys. 134, 084106 (2011)

    Article  ADS  Google Scholar 

  3. F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999)

    Google Scholar 

  4. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry (Dover Publications, New York, 1996)

    Google Scholar 

  5. H. Haug, A.-P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, Heidelberg, 1996)

    Google Scholar 

  6. P. Danielewicz, Quantum theory of nonequilibrium processes I. Ann. Phys. 152, 239 (1984)

    Article  ADS  Google Scholar 

  7. N.E. Dahlen, R. van Leeuwen, Self-consistent solution of the Dyson equation for atoms and molecules within a conserving approximation. J. Chem. Phys. 122, 164102 (2005)

    Article  ADS  Google Scholar 

  8. D. Semkat, M. Bonitz, D. Kremp, Relaxation of a quantum many-body system from a correlated initial state. A general and consistent approach. Contrib. Plasma Phys. 43, 321 (2003)

    Article  ADS  Google Scholar 

  9. D. Kremp, D. Semkat, M. Bonitz, Short-time kinetics and initial correlations in quantum kinetic theory. J. Phys. Conf. Ser. 11, 1 (2005)

    Article  ADS  Google Scholar 

  10. D. Kremp, M. Schlanges, W.D. Kraeft, Quantum Statistics of Nonideal Plasmas (Springer, Berlin, 2005)

    Google Scholar 

  11. N.E. Dahlen, A. Stan, R. van Leeuwen, Nonequilibrium Green function theory for excitation and transport in atoms and molecules. J. Phys. Conf. Ser. 35, 324 (2006)

    Article  ADS  Google Scholar 

  12. M. Bonitz, D. Kremp, Kinetic energy relaxation and correlation time of nonequilibrium many-particle systems. Phys. Lett. A 212, 83 (1996)

    Article  ADS  Google Scholar 

  13. N.H. Kwong, M. Bonitz, R. Binder, H.S. Köhler, Semiconductor Kadanoff-Baym equation results for optically excited electron-hole plasmas in quantum wells. Phys. Status Solidi (b) 206, 197 (1998)

    Article  ADS  Google Scholar 

  14. H.S. Köhler, N.H. Kwong, H.A. Yousif, A Fortran code for solving the Kadanoff-Baym equations for a homogeneous fermion system. Comput. Phys. Commun. 123, 123 (1999)

    Article  ADS  MATH  Google Scholar 

  15. M. Hartmann, W. Schäfer, Real time approach to relaxation and dephasing processes in semiconductors. Phys. Status Solidi (c) 173, 165 (1992)

    Article  ADS  Google Scholar 

  16. W. Schäfer, Influence of electron-electron scattering on femtosecond four-wave mixing in semiconductors. J. Opt. Soc. Am. B 13, 1291 (1996)

    Article  ADS  Google Scholar 

  17. H.S. Köhler, Memory and correlation effects in nuclear collisions. Phys. Rev. C 51, 3232 (1995)

    Article  ADS  Google Scholar 

  18. K. Balzer, S. Hermanns, M. Bonitz, The generalized Kadanoff-Baym ansatz. Computing nonlinear response properties of finite systems, arXiv:1211.3036 (2012)

  19. R. Binder, H.S. Köhler, M. Bonitz, N. Kwong, Green’s function description of momentum-orientation relaxation of photoexcited electron plasmas in semiconductors. Phys. Rev. B 55, 5110 (1997)

    Article  ADS  Google Scholar 

  20. D. Semkat, Kurzzeitkinetik und Anfangskorrelationen in nichtidealen Vielteilchensystemen. Dissertation, Universität Rostock, Germany, 2001

    Google Scholar 

  21. D. Semkat, D. Kremp, M. Bonitz, Kadanoff-Baym equations with initial correlations. Phys. Rev. E 59, 1557 (1999)

    Article  ADS  Google Scholar 

  22. N.-H. Kwong, M. Bonitz, Real-time Kadanoff-Baym approach to plasma oscillations in a correlated electron gas. Phys. Rev. Lett. 84, 1768 (2000)

    Article  ADS  Google Scholar 

  23. M. Bonitz, Correlation time approximation in kinetic theory. Phys. Lett. A 221, 85 (1996)

    Article  ADS  Google Scholar 

  24. M. Bonitz, N.H. Kwong, D. Semkat, D. Kremp, Generalized Kadanoff-Baym theory for non-equilibrium many-body systems in external fields. An effective multi-band approach. Contrib. Plasma Phys. 39, 37 (1999)

    Article  ADS  Google Scholar 

  25. D.O. Gericke, S. Kosse, M. Schlanges, M. Bonitz, T-matrix approach to equilibium and nonequilibrium carrier-carrier scattering in semiconductors. Phys. Rev. B 59, 10639 (1999)

    Article  ADS  Google Scholar 

  26. E.K.U. Gross, J.F. Dobson, M. Petersilka, Density functional theory of time-dependent phenomena. Top. Curr. Chem. 181, 81 (1996)

    Article  Google Scholar 

  27. G. Onida, L. Reining, A. Rubio, Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601 (2002)

    Article  ADS  Google Scholar 

  28. C.A. Ullrich, High Performance Computing in Science and Engineering, Garching/Munich 2009 (Oxford University Press, New York, 2012)

    Google Scholar 

  29. K. Balzer, M. Bonitz, R. van Leeuwen, A. Stan, N.E. Dahlen, Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Phys. Rev. B 79, 245306 (2009)

    Article  ADS  Google Scholar 

  30. N.E. Dahlen, R. van Leeuwen, A. Stan, Propagating the Kadanoff-Baym equations for atoms and molecules. J. Phys. Conf. Ser. 35, 340 (2006)

    Article  ADS  Google Scholar 

  31. A. Stan, N.E. Dahlen, R. van Leeuwen, Fully self-consistent GW calculations for atoms and molecules. Europhys. Lett. 76, 298 (2006)

    Article  ADS  Google Scholar 

  32. N.E. Dahlen, R. van Leeuwen, Solving the Kadanoff-Baym equations for inhomogeneous systems: application to atoms and molecules. Phys. Rev. Lett. 98, 153004 (2007)

    Article  ADS  Google Scholar 

  33. M.S. Lee, M. Head-Gordon, Polarized atomic orbitals for self-consistent field electronic structure calculations. J. Chem. Phys. 107, 9085 (1997)

    Article  ADS  Google Scholar 

  34. N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847 (1997)

    Article  ADS  Google Scholar 

  35. P.L. Silvestrelli, N. Marzari, D. Vanderbilt, M. Parrinello, Maximally-localized Wanner functions for disordered systems: application to amorphous silicon. Solid State Commun. 107, 7 (1998)

    Article  ADS  Google Scholar 

  36. I. Schnell, G. Czycholl, R.C. Albers, Hubbard-U calculations for Cu from first-principle Wannier functions. Phys. Rev. B 65, 075103 (2002)

    Article  ADS  Google Scholar 

  37. F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Calculations of Hubbard U from first-principles. Phys. Rev. B 74, 125106 (2006)

    Article  ADS  Google Scholar 

  38. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  39. T.N. Rescigno, C.W. McCurdy, Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 62, 032706 (2000)

    Article  ADS  Google Scholar 

  40. L.A. Collins, S. Mazevet, J.D. Kress, B.I. Schneider, D.L. Feder, Time-dependent simulations of large-scale quantum dynamics. Phys. Scr. T110, 408 (2004)

    Article  ADS  Google Scholar 

  41. J.C. Light, I.P. Hamilton, J.V. Lill, Generalized discrete variable approximation in quantum mechanics. J. Chem. Phys. 82, 1400 (1985)

    Article  ADS  Google Scholar 

  42. J.C. Light, T. Carrington, Discrete-variable representations and their utilization. Adv. Chem. Phys. 114, 263 (2007)

    Article  Google Scholar 

  43. B.I. Schneider, L.A. Collins, S.X. Hu, Parallel solver for the time-dependent linear and nonlinear Schrödinger equation. Phys. Rev. E 73, 036708 (2006)

    Article  ADS  Google Scholar 

  44. S.X. Hu, Quantum study of slow electron collisions with Rydberg atoms. Phys. Rev. A 74, 062716 (2006)

    Article  ADS  Google Scholar 

  45. L. Tao, C.W. McCurdy, T.N. Rescigno, Grid-based methods for diatomic quantum scattering problems: a finite-element discrete-variable representation in prolate spheroidal coordinates. Phys. Rev. A 79, 012719 (2009)

    Article  ADS  Google Scholar 

  46. L. Tao, C.W. McCurdy, T.N. Rescigno, Grid-based methods for diatomic quantum scattering problems. II. Time-dependent treatment of single- and two-photon ionization of \(\mathrm{H}_{2}^{+}\). Phys. Rev. A 80, 013402 (2009)

    Article  ADS  Google Scholar 

  47. L. Tao, C.W. McCurdy, T.N. Rescigno, Grid-based methods for diatomic quantum scattering problems. III. Double photoionization of molecular hydrogen in prolate spheroidal coordinates. Phys. Rev. A 82, 023423 (2010)

    Article  ADS  Google Scholar 

  48. S.X. Hu, L.A. Collins, Strong-field ionization of molecules in circularly polarized few-cycle pulses. Phys. Rev. A 73, 023405 (2006)

    Article  ADS  Google Scholar 

  49. D.J. Haxton, K.V. Lawler, C.W. McCurdy, Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules. Phys. Rev. A 83, 063416 (2011)

    Article  ADS  Google Scholar 

  50. B.I. Schneider, L.A. Collins, The discrete variable method for the solution of the time-dependent Schrödinger equation. J. Non-Cryst. Solids 351, 1551 (2005)

    Article  ADS  Google Scholar 

  51. K. Balzer, Solving the two-time Kadanoff-Baym equations. Application to model atoms and molecules. Dissertation, Universität Kiel, Germany, 2012

    Google Scholar 

  52. D.E. Manolopoulos, R.E. Wyatt, Quantum scattering via the log derivative version of the Kohn variational principle. Chem. Phys. Lett. 152, 23 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balzer, K., Bonitz, M. (2013). Representations of the Nonequilibrium Green’s Function. In: Nonequilibrium Green's Functions Approach to Inhomogeneous Systems. Lecture Notes in Physics, vol 867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35082-5_3

Download citation

Publish with us

Policies and ethics