Skip to main content

Techniques for Locally Adaptive Time Stepping Developed over the Last Two Decades

  • Conference paper
  • First Online:
Domain Decomposition Methods in Science and Engineering XX

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 91))

Abstract

Adaptive mesh refinement techniques are well established and widely used for space discretizations. In contrast, local time stepping is much less used, and the corresponding techniques are less mature, needing delicate synchronization steps, which involve interpolation, extrapolation or projection. These operations can have adverse effects on the stability, and can also destroy important geometric properties of the scheme, like for example the conservation of invariants. We give here a survey on the intensive research performed in this direction over the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. D. Bennequin, M. J. Gander, and L. Halpern. A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. of Comp., 78(265):185–232, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Berger. Stability of interfaces with mesh refinement. Math. of Comp., 45:301–318, 1985.

    Article  MATH  Google Scholar 

  3. M. J. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comp. Phys., 53:484–512, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Blum, S. Lisky, and R. Rannacher. A domain splitting algorithm for parabolic problems. Computing, 49:11–23, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Borrel, L. Halpern, and J. Ryan. Euler - Navier-Stokes coupling for aeroacoustics problems. In A. Kuzmin, editor, Computational Fluid Dynamics 2010, ICCFD6, pages 427–434. Springer-Verlag, 2010.

    Google Scholar 

  6. S. Cailleau, V. Fedorenko, B. Barnier, E. Blayo, and L. Debreu. Comparison of different numerical methods used to handle the open boundary of a regional ocean circulation model of the bay of biscay. Ocean Modelling, 25:1–16, 2008.

    Article  Google Scholar 

  7. F. Collino, T. Fouquet, and P. Joly. A conservative space-time mesh refinement method for the 1d wave equation. part I: construction. Numer. Math., 95:197–221, 2003.

    Google Scholar 

  8. F. Collino, T. Fouquet, and P. Joly. A conservative space-time mesh refinement method for the 1d wave equation. part II: analysis. Numer. Math., 95:223–251, 2003.

    Google Scholar 

  9. C. Dawson, Q. Du, and T. Dupont. A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comp., 57(195):63–71, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Debreu and E. Blayo. Two-way embedding algorithms: a review. Ocean Dynamics, 58:415–428, 2008.

    Article  Google Scholar 

  11. J. Diaz and M. J. Grote. Energy conserving explicit local time-stepping for second-order wave equations. SIAM J. Scientific Computing, 31: 1985–2014, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Dumbser, M. Käser, and E.F. Toro. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes V: Local time stepping and p-adaptivity. Geophysical Journal International, 171(2):695–717, 2007.

    Article  MATH  Google Scholar 

  13. Ch. Engstler and Ch. Lubich. Multirate extrapolation methods for differential equations with different time scales. Computing, 58:173–185, 1997.

    Google Scholar 

  14. J. Erickson, D. Guoy, J.M. Sullivan, and A. Üngör. Building spacetime meshes over arbitrary spatial domains. Eng. with Comp., 20: 342–353, 2005.

    Article  Google Scholar 

  15. K. Eriksson, C. Johnson, and A. Logg. Adaptive computational methods for parabolic problems. In Encyclopedia of Computational Mechanics, 2004.

    Google Scholar 

  16. R. E. Ewing, R. D. Lazarov, and A. T. Vassilev. Finite difference scheme for parabolic problems on composite grids with refinement in time and space. SIAM J. Numer. Anal., 31:1605–1622, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Faille, F. Nataf, F. Willien, and S. Wolf. Two local time stepping schemes for parabolic problems. ESAIM: proceedings, 29:58–72, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. J. Gander and L. Halpern. Optimized Schwarz waveform relaxation methods for advection reaction diffusion problems. SIAM J. Numer. Anal., 45(2):666–697, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. J. Gander and C. Japhet. An algorithm for non-matching grid projections with linear complexity. In M. Bercovier, M.J. Gander, D. Keyes, and O.B. Widlund, editors, Domain Decomposition Methods in Science and Engineering XVIII, pages 185–192. Springer Verlag LNCSE, 2008.

    Google Scholar 

  20. M. J. Gander and A. M. Stuart. Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput., 19 (6):2014–2031, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. J. Gander, L. Halpern, and F. Nataf. Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM Journal of Numerical Analysis, 41(5):1643–1681, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  22. C.W. Gear and D.R. Wells. Multirate linear multistep methods. BIT, 24:484–502, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Günter, A. Kværnø, and P. Rentrop. Multirate partitioned Runge-Kutta methods. BIT, 38(2):101–112, 1998.

    Google Scholar 

  24. L. Halpern. Non conforming space-time grids for the wave equation: a new approach. Monografías del Seminario Matemático García de Galdeano, 31:479–495, 2004.

    Google Scholar 

  25. L. Halpern. Local space-time refinement for the one dimensional wave equation. J. of Comp. Acoustics, 13(3):153–176, 2005.

    Google Scholar 

  26. D.J. Hardy, D.I. Okunbor, and R.D. Skeel. Symplectic variable step size integration for N-body problems. Appl. Numer. Math., 29(5):19–30, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Kværno and P. Rentrop. Low order multirate Runge-Kutta methods in electric circuit simulation, 1999.

    Google Scholar 

  28. R. Löhner, K. Morgan, and O. C. Zienkiewicz. The use of domain splitting with an explicit hyperbolic solver. Computer Methods in Applied Mechanics and Engineering, 45:313–329, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Martin and E. Blayo. Revisiting the open boundary problem in computational fluid dynamics. In R. Bank, M. Holst, O.B. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XX. Springer-Verlag, 2012.

    Google Scholar 

  30. M. Neumüller and O. Steinbach. A DG Space-Time Domain Decomposition Method. In R. Bank, M. Holst, O.B. Widlund, and J. Xu, editors, Domain Decomposition Methods in Science and Engineering XX. Springer Verlag, 2013.

    Google Scholar 

  31. S. Osher and R. Sanders. Numerical approximations to nonlinear conservation laws with locally varying time and space grids. Math. of Comp., 41(164):321–336, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Piperno. Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems. ESAIM: Mathematical Modelling and Numerical Analysis, 40(5):815–841, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  33. F. Pretorius and L. Lehner. Adaptive mesh refinement for characteristic codes. J. Comp. Phys., 198:10–34, 2004.

    Article  MATH  Google Scholar 

  34. R. C. Rice. Split Runge-Kutta methods for simulatneous equations. J. Res. Natl. Bur. Standards, 64B:151–170, 1960.

    Article  MathSciNet  Google Scholar 

  35. S. Skelboe and P. U. Andersen. Stability properties of backward Euler multirate formulas. SIAM J. Sci. Stat. Comp., 10:1000–1009, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Üngör and A. Sheffer. Tent-pitcher: A meshing algorithm for space-time discontinuous galerkin methods. In In proc. 9th int’l. meshing roundtable, pages 111–122, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Gander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gander, M.J., Halpern, L. (2013). Techniques for Locally Adaptive Time Stepping Developed over the Last Two Decades. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds) Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in Computational Science and Engineering, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35275-1_44

Download citation

Publish with us

Policies and ethics