Skip to main content
  • 903 Accesses

Abstract

Chapter 7 is concerned with the energy-preserving numerical integration for the system of oscillatory second-order differential equations \(\ddot{q}+Mq=f(q)\), where M is a symmetric positive semi-definite matrix and f(q)=−∇U(q). Based on the traditional average-vector-field (AVF) methods, adapted average-vector-field (AAVF) methods are developed. A discretization with a quadrature formula leads to a highly accurate energy-preserving ERKN-type AAVF integrator. This integrator is symmetric and is shown to preserve the Hamiltonian H if U(q) is a polynomial of degree s≤6. In the long-term integration of the well-known Fermi–Pasta–Ulam problem, the integrator is shown to preserve the energy more accurately than some existing methods in the literature. Resonance instabilities and energy exchange between stiff components are also illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    MathSciNet  Google Scholar 

  2. Castella, F., Chartier, P., Faou, E.: An averaging technique for highly oscillatory Hamiltonian problems. SIAM J. Numer. Anal. 47, 2808–2837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Celledoni, E., McLachlan, R.I., Owren, B., Quispel, G.R.W.: Energy-preserving integrators and the structure of B-series. Found. Comput. Math. 10, 673–693 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cieslinski, J.L., Ratkiewicz, B.: Energy-preserving numerical schemes of high accuracy for one-dimensional Hamiltonian systems. J. Phys. A, Math. Theor. 44, 155–206 (2011)

    Article  MathSciNet  Google Scholar 

  5. Cieslinski, J.L., Ratkiewicz, B.: Improving the accuracy of the discrete gradient method in the one dimensional case. Phys. Rev. E 81, 016704 (2010)

    Google Scholar 

  6. Cohen, D., Hairer, E.: Linear energy-preserving integrators for Poisson systems. BIT 51, 91–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, D., Hairer, E., Lubich, C.: Numerical energy conservation for multi-frequency oscillatory differential equations. BIT 45, 287–305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlby, M., Owren, B., Yaguchi, T.: Preserving multiple first integrals by discrete gradients. J. Phys. A, Math. Theor. 44, 305205 (2011)

    Article  MathSciNet  Google Scholar 

  9. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  Google Scholar 

  10. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  11. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Iavernaro, F., Trigiante, D.: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. J. Numer. Anal. Ind. Appl. Math. 4, 787–787101 (2009)

    MathSciNet  Google Scholar 

  13. Marciniak, A.: Arbitrary order numerical methods conserving integrals for solving dynamic equations. Comput. Math. Appl. 28, 33–43 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Philos. Trans. R. Soc. A 357, 1021–1046 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, B., Wu, X.: A new high precision energy-preserving integrator for system of oscillatory second-order differential equations. Phys. Lett. A 376, 1185–1190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, X., Wang, B., Shi, W.: Efficient energy-preserving integrators for oscillatory Hamiltonian systems. J. Comput. Phys. 235, 587–605 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wu, X., You, X., Wang, B. (2013). Energy-Preserving ERKN Methods. In: Structure-Preserving Algorithms for Oscillatory Differential Equations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35338-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35338-3_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35337-6

  • Online ISBN: 978-3-642-35338-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics