Skip to main content

Modeling and Simulation of Walking with a Mobile Gait Rehabilitation System Using Markerless Motion Data

  • Chapter
Modeling, Simulation and Optimization of Bipedal Walking

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 18))

  • 2430 Accesses

Abstract

Research and development of gait rehabilitation systems and devices such as orthosis, prosthesis and wearable robots are complex processes in which simulation techniques are exploited in order to accelerate development process, reduce development costs, optimize the proposed solution, analyse the interaction between the system and human, etc. The modelling and simulation results can give valuable insights in the functionality of the system and directions for optimization and improvement of the researched system. Within the frame of the RoboWalker project a concept of a mobile robotic gait rehabilitation system, which will improve gait rehabilitation through several novel system features, was investigated. The system consists of a mobile platform with integrated active exoskeleton. In this paper, the modelling and simulation approaches utilized in designing and analysing the concept of mobile gait rehabilitation system are presented together with a novel markerless motion capture system that was used for collecting human motion data for simulation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AnyBody, http://www.anybodytech.com

  2. Biometrics Ltd., http://www.biometricsltd.com

  3. Colombo, G., Joerg, M., Schreier, R., Dietz, V.: Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research & Development 37(6), 693–700 (2000)

    Google Scholar 

  4. Damsgaard, M., et al.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simulation Modelling Practice and Theory 14, 1100–1111 (2006)

    Article  Google Scholar 

  5. Hemami, H., Weimer, F.C., Kwzekanani, S.H.: Some aspects of the inverted pendulum problem for modeling of locomotion systems. IEEE Trans. Automat. Contr. AC-18, 658461 (1973)

    Google Scholar 

  6. Kajita, S., Matsumoto, O., Saigo, M.: Real-time 3D walking pattern generation for biped robot with telescopic legs. In: 2001 IEEE International Conference on Robotics and Automation, pp. 2299–2306 (2001)

    Google Scholar 

  7. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain - Derivation and Application of the Linear Inverted Pendulum Mode. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 1405–1411 (1991)

    Google Scholar 

  8. Kajita, S., Yamaura, T., Kobayashi, A.: Dynamic walking control of a biped robot along a potential-energy conserving orbit. IEEE Trans. Robot. Autom. 8(4), 431–438 (1992)

    Article  Google Scholar 

  9. LifeMod, http://www.lifemodeler.com

  10. MATLAB, http://www.mathworks.com

  11. MSC Adams, http://www.mscsoftware.com

  12. Nakamura, Y., Yamane, K., Suzuki, I., Fujita, Y.: Dynamics Computation of Musculo-Skeletal Human Model Based on Efficient Algorithm for Closed Kinematic Chains. In: Proceedings of the 2nd International Symposium on Adaptive Motion of Animals and Machines (2003)

    Google Scholar 

  13. OpenSim, https://simtk.org

  14. Perry, J.: Gait Analysis: Normal and Pathological Function. SLACK Incorporated (1992)

    Google Scholar 

  15. Ristic, D., Greaser, A.: Performance measure as feedback variable in image processing. EURASIP Journal on Applied Signal Processing (2006)

    Google Scholar 

  16. Ristic-Durrant, D., Leu, A., Slavnic, S., Greaser, A.: Markerless Vision-Based Human Gait Analysis System for Gait Rehabilitation. In: The 3rd International Congress on Gait & Mental Function, Washington DC, USA (2010)

    Google Scholar 

  17. Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)

    Article  Google Scholar 

  18. Shiratsu, A., Coury, H.J.C.G.: Reliability and accuracy of different sensors of a flexible electrogoniometer. Clinical Biomechanics 18, 682–684 (2003)

    Article  Google Scholar 

  19. SIMM, http://www.musculographics.com

  20. Sugihara, T., Nakamura, Y., Inoue, H.: Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 2, pp. 1404–1409 (2002)

    Google Scholar 

  21. Veneman, J.F., Kruidhof, R., Hekman, E.E.G., et al.: Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 379–386 (2007)

    Article  Google Scholar 

  22. Vukobratovic, M., Borovac, B.: Zero-moment point - thirty five years of its life. International Journal of Humanoid Robotics 1(1), 157–173 (2004)

    Article  Google Scholar 

  23. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 3rd edn. John Wiley & Sons (2005)

    Google Scholar 

  24. Zatsiorsky, V.M.: Kinetics of human motion, Champaign IL (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Slavnić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Slavnić, S., Leu, A., Ristić-Durrant, D., Graeser, A. (2013). Modeling and Simulation of Walking with a Mobile Gait Rehabilitation System Using Markerless Motion Data. In: Mombaur, K., Berns, K. (eds) Modeling, Simulation and Optimization of Bipedal Walking. Cognitive Systems Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36368-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36368-9_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36367-2

  • Online ISBN: 978-3-642-36368-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics