Skip to main content

A High Order PID-Sliding Mode Control: Simulation on a Torpedo

  • Chapter
  • First Online:
Applied Methods and Techniques for Mechatronic Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 452))

  • 2071 Accesses

Abstract

Position and speed control of the torpedo present a real problem for the actuators because of the high level of system nonlinearity and because of the external disturbances. The nonlinear systems control is based on several different approaches, which include the sliding mode control. This chapter deals with the basic concepts, mathematics, and design aspects of a control for nonlinear systems that make the chattering effect lower. As solution to this problem we will adopt as a starting point the high order sliding mode approaches and then the PID-sliding surface. Simulation results show that this control strategy can attain excellent control performance with no chattering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller J, Bevly DM (2013) A system for autonomous canine guidance. Int J Model Ident Control 20(1):33–46

    Google Scholar 

  2. Nam SQ, Kown SH, Yoo WS, Lee MH, Jeon WS (1993) Robust fuzzy control of o three fin torpedo. J Soc Nav Architects Jpn 173: 231–235

    Google Scholar 

  3. Rhif A, Kardous Z, Ben Hadj Braiek N (2011) A high order sliding mode-multimodel control of non linear system simulation on a submarine mobile. In: International multi-conference on systems, signals and devices, Tunisia, March 2011

    Google Scholar 

  4. Rhif A, Kardous Z, Hadj Braiek NB (2012) A sliding mode multimodel control for a sensorless photovoltaic system. J Sci Ind Res 71:418–424

    Google Scholar 

  5. Utkin VI (1977) Variable structure systems with sliding modes. IEEE Trans Autom Control 22(2):212–222

    Article  MATH  MathSciNet  Google Scholar 

  6. Eker İ (2005) Sliding mode control with PID sliding surface and experimental application to an electromechanical plant. ISA Trans 45(1):109–118

    Google Scholar 

  7. Rhif A (2011) Position control review for a photovoltaic system: dual axis sun tracker. IETE Tech Rev 28:479–485

    Google Scholar 

  8. Rhif A (2011) A review note for position control of an autonomous underwater vehicle. IETE Tech Rev 28:486–493

    Google Scholar 

  9. Li Z, Shui-sheng Q (2005) Analysis and experimental study of proportional-integral sliding mode control for DC/DC converter. J Electron Sci Technol Chin 3(2)

    Google Scholar 

  10. Lee DS, Youn MJ (1989) Controller design of variable structure systems with nonlinear sliding surface. Electron Lett 25(25):1715–1716

    Article  Google Scholar 

  11. Emel’yanov SV (1963) On pecularities of variables structure control systems with discontinuous switching functions. Doklady ANSSR 153:776–778

    Google Scholar 

  12. Emel’yanov SV (1967) Variable structure control systems. Moscow, Nouka

    Google Scholar 

  13. Utkin VI, Young KD (1978) Methods for constructing discontinuity planes in multidimensional variable structure systems. Auto Remote control 166–170

    Google Scholar 

  14. Shi Y, Zhou C, Huang X, Yin Q (2012) Fault-tolerant sliding mode control for the interferometer system under the unanticipated faults. Int J Model Ident Control 16(4):353–362

    Google Scholar 

  15. Tzypkin YZ (1955) Theory of control relay systems. Gostekhizdat, Moscow

    Google Scholar 

  16. Anosov DV (1959) On stability of equilibrium points of relay systems. Autom Remote Control 2:135–149

    MathSciNet  Google Scholar 

  17. Jie S, Yong Z, Chengliang Y (2012) Longitudinal brake control of hybrid electric bus using adaptive fuzzy sliding mode control. Int J Model Ident Control 15(3):147–155

    Article  Google Scholar 

  18. Rhif A, Kardous Z, Ben Hadj Braiek N (2013) A sliding mode-multimodel control for torque evolution of a double feed asynchronous generator. In: International conference on electrical engineering and software applications, Hammamet, 2013

    Google Scholar 

  19. Vaidyanathan S (2013) Global chaos synchronization of Liu-Yang systems via sliding mode control. In: International conference on control, engineering and information technology (CEIT’14). Sousse, Tunisia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Rhif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rhif, A., Kardous, Z., Ben Hadj Braiek, N. (2014). A High Order PID-Sliding Mode Control: Simulation on a Torpedo. In: Liu, L., Zhu, Q., Cheng, L., Wang, Y., Zhao, D. (eds) Applied Methods and Techniques for Mechatronic Systems. Lecture Notes in Control and Information Sciences, vol 452. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36385-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36385-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36384-9

  • Online ISBN: 978-3-642-36385-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics