Skip to main content

Applications of Electrospun Nanofibers

  • Chapter
  • First Online:
One-Dimensional nanostructures

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 3299 Accesses

Abstract

With the development of electrospinning, diverse materials have been successfully used in electrospinning for nanofibers including organic materials, organic/inorganic materials, and inorganic materials with the diameter range from microscale down to nanoscale. Additionally, variety of architectures based on electrospun fibers have been realized such as solidified fibers, porous (surface pores or interior pores) fibers, hollow fibers, core–shell fibers, hierarchical structured fibers. Those unique advantages of electrospinning afford the multi-functional properties for diverse applications, including nanofiber reinforcement, filtration, catalysis, electronic devices, lithium-ion battery, fuel cells, biomedical field, etc. In this chapter, we intend to provide an exposition of some special activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chand S (2000) Carbon fibers for composites. J Mater Sci 35(6):1303–1313

    Article  CAS  Google Scholar 

  2. Bergshoef MM, Vancso GJ (1999) Transparent nanocomposites with ultrathin, electrospun nylon-4, 6 fiber reinforcement. Adv Mater 11(16):1362–1365. doi:10.1002/(sici)1521-4095(199911)11:16<1362:aid-adma1362>3.0.co;2-x

    Article  CAS  Google Scholar 

  3. J-S Kim, Reneker DH (1999) Mechanical properties of composites using ultrafine electrospun fibers. Polym Compos 20(1):124–131. doi:10.1002/pc.10340

    Article  Google Scholar 

  4. Dzenis Y (2008) Materials science—structural nanocomposites. Science 319(5862):419–420. doi:10.1126/science.1151434

    Article  CAS  Google Scholar 

  5. Fong H (2004) Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 45(7):2427–2432. doi:10.1016/j.polymer.2004.01.067

    Article  CAS  Google Scholar 

  6. Tian M, Gao Y, Liu Y, Liao Y, Xu R, Hedin NE, Fong H (2007) Bis-GMA/TEGDMA dental composites reinforced with electrospun nylon 6 nanocomposite nanofibers containing highly aligned fibrillar silicate single crystals. Polymer 48(9):2720–2728. doi:10.1016/j.polymer.2007.03.032

    Article  CAS  Google Scholar 

  7. Gao Y, Sagi S, Zhang L, Liao Y, Cowles DM, Sun Y, Fong H (2008) Electrospun nano-scaled glass fiber reinforcement of bis-GMA/TEGDMA dental composites. J Appl Polym Sci 110(4):2063–2070. doi:10.1002/app.28695

    Article  CAS  Google Scholar 

  8. Sun W, Cai Q, Li P, Deng X, Wei Y, Xu M, Yang X (2010) Post-draw PAN–PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite. Dent Mater 26(9):873–880. doi:10.1016/j.dental.2010.03.022

    Article  CAS  Google Scholar 

  9. Han SO, Son WK, Youk JH, Park WH (2008) Electrospinning of ultrafine cellulose fibers and fabrication of poly (butylene succinate) biocomposites reinforced by them. J Appl Polym Sci 107(3):1954–1959. doi:10.1002/app.26643

    Article  CAS  Google Scholar 

  10. Tang C, Liu H (2008) Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance. Compos Part A: Appl Sci Manuf 39(10):1638–1643. doi:10.1016/j.compositesa.2008.07.005

    Article  CAS  Google Scholar 

  11. Özden E, Menceloğlu YZ, Papila M (2010) Engineering chemistry of electrospun nanofibers and interfaces in nanocomposites for superior mechanical properties. ACS Appl Mat Interfaces 2(7):1788–1793. doi:10.1021/am100288r

    Article  CAS  Google Scholar 

  12. Suthat A, Chase G (2001) Nanofibres in filter media. Chem Eng 726:26–28

    Google Scholar 

  13. Podgórski A, Bałazy A, Gradoń L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61(20):6804–6815. doi:10.1016/j.ces.2006.07.022

    Article  CAS  Google Scholar 

  14. Ahn YC, Park SK, Kim GT, Hwang YJ, Lee CG, Shin HS, Lee JK (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6(6):1030–1035. doi:10.1016/j.cap.2005.07.013

    Article  Google Scholar 

  15. Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315(1–2):11–19. doi:10.1016/j.memsci.2008.01.049

    Article  CAS  Google Scholar 

  16. Zhang S, Shim WS, Kim J (2009) Design of ultra-fine nonwovens via electrospinning of Nylon 6: spinning parameters and filtration efficiency. Mater Des 30(9):3659–3666. doi:10.1016/j.matdes.2009.02.017

    Article  CAS  Google Scholar 

  17. Jeong EH, Yang H, Youk JH (2007) Preparation of polyurethane cationomer nanofiber mats for use in antimicrobial nanofilter applications. Mater Lett 61(18):3991–3994. doi:10.1016/j.matlet.2007.01.003

    Article  CAS  Google Scholar 

  18. Lala NL, Ramaseshan R, Li BJ, Sundarrajan S, Barhate RS, Liu YJ, Ramakrishna S (2007) Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants. Biotechnol Bioeng 97(6):1357–1365. doi:10.1002/bit.21351

    Article  CAS  Google Scholar 

  19. Hou H, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16(1):69–73. doi:10.1002/adma.200306205

    Article  CAS  Google Scholar 

  20. Formo E, Lee E, Campbell D, Xia Y (2008) Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic applications. Nano Lett 8(2):668–672. doi:10.1021/nl073163v

    Article  CAS  Google Scholar 

  21. Formo E, Yavuz MS, Lee EP, Lane L, Xia Y (2009) Functionalization of electrospun ceramic nanofibre membranes with noble-metal nanostructures for catalytic applications. J Mater Chem 19(23):3878–3882

    Article  CAS  Google Scholar 

  22. Su L, Jia W, Schempf A, Ding Y, Lei Y (2009) Free-standing palladium/polyamide 6 nanofibers for electrooxidation of alcohols in alkaline medium. J Phys Chem 113(36):16174–16180. doi:10.1021/jp905606s

    CAS  Google Scholar 

  23. Kim HJ, Kim YS, Seo MH, Choi SM, Kim WB (2009) Pt and PtRh nanowire electrocatalysts for cyclohexane-fueled polymer electrolyte membrane fuel cell. Electrochem Commun 11(2):446–449. doi:10.1016/j.elecom.2008.12.027

    Article  CAS  Google Scholar 

  24. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ (2004) Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater 69(1–2):77–83. doi:10.1016/j.micromeso.2003.12.023

    Article  CAS  Google Scholar 

  25. Liu RL, Ye HY, Xiong XP, Liu HQ (2010) Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property. Mater Chem Phys 121(3):432–439. doi:10.1016/j.matchemphys.2010.02.002

    Article  CAS  Google Scholar 

  26. Lin DD, Wu H, Zhang R, Pan W (2009) Enhanced photocatalysis of electrospun Ag–ZnO heterostructured nanofibers. Chem Mater 21(15):3479–3484. doi:10.1021/cm900225p

    Article  CAS  Google Scholar 

  27. Wang ZJ, Li ZY, Zhang HN, Wang C (2009) Improved photocatalytic activity of mesoporous ZnO-SnO2 coupled nanofibers. Catal Commun 11(4):257–260. doi:10.1016/j.catcom.2009.10.006

    Article  CAS  Google Scholar 

  28. Wang Y, Santiago-Aviles JJ (2003) Large negative magnetoresistance and two-dimensional weak localization in carbon nanofiber fabricated using electrospinning. J Appl Phys 94(3):1721–1727. doi:10.1063/1.1587268

    Article  CAS  Google Scholar 

  29. Zhou YX, Freitag M, Hone J, Staii C, Johnson AT, Pinto NJ, MacDiarmid AG (2003) Fabrication and electrical characterization of polyaniline-based nanofibers with diameter below 30 nm. Appl Phys Lett 83(18):3800–3802. doi:10.1063/1.1622108

    Article  CAS  Google Scholar 

  30. Wang Y, Ramos I, and Santiago-Aviles J (2007) Electrical characterization of a single electrospun porous SnO2 nanoribbon in ambient air. Nanotechnology 18 (43):435704 (1–4). doi:43570410.1088/0957-4484/18/43/435704

    Google Scholar 

  31. Zhou ZP, Lai CL, Zhang LF, Qian Y, Hou HQ, Reneker DH, Fong H (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50(13):2999–3006. doi:10.1016/j.polymer.2009.04.058

    Article  CAS  Google Scholar 

  32. Ferain I, Colinge CA, Colinge JP (2011) Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479(7373):310–316. doi:10.1038/nature10676

    Article  CAS  Google Scholar 

  33. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337. doi:10.1038/nature10679

    Article  CAS  Google Scholar 

  34. Kergoat L, Piro B, Berggren M, Horowitz G, Pham MC (2012) Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal Bioanal Chem 402(5):1813–1826. doi:10.1007/s00216-011-5363-y

    Article  CAS  Google Scholar 

  35. Natali D, Caironi M (2012) Charge injection in solution-processed organic field-effect transistors: physics. Models Charact Methods. Adv Mater 24(11):1357–1387. doi:10.1002/adma.201104206

    CAS  Google Scholar 

  36. Sokolov AN, Tee BCK, Bettinger CJ, Tok JBH, Bao ZN (2012) Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications. Acc Chem Res 45(3):361–371. doi:10.1021/ar2001233

    Article  CAS  Google Scholar 

  37. Wang CL, Dong HL, Hu WP, Liu YQ, Zhu DB (2012) Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev 112(4):2208–2267. doi:10.1021/cr100380z

    Article  CAS  Google Scholar 

  38. Pinto NJ, Johnson AT, MacDiarmid AG, Mueller CH, Theofylaktos N, Robinson DC, Miranda FA (2003) Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Appl Phys Lett 83(20):4244–4246. doi:10.1063/1.1627484

    Article  CAS  Google Scholar 

  39. Wu H, Lin DD, Pan W (2006) Fabrication, assembly, and electrical characterization of CuO nanofibers. Appl Phys Lett 89(13). doi:133125(1)-(3).10.1063/1.2355474

  40. Wang W, Li ZY, Xu XR, Dong B, Zhang HN, Wang ZJ, Wang C, Baughman RH, Fang SL (2011) Au-Doped polyacrylonitrile-polyaniline core-shell electrospun nanofibers having high field-effect mobilities. Small 7(5):597–600. doi:10.1002/smll.201001716

    Article  CAS  Google Scholar 

  41. Wang W, Lu XF, Li ZY, Lei JY, Liu XC, Wang ZJ, Zhang HN, Wang C (2011) one-dimensional polyelectrolyte/polymeric semiconductor core/shell structure: sulfonated poly(arylene ether ketone)/polyaniline nanofibers for organic field-effect transistors. Adv Mater 23(43):5109–5112. doi:10.1002/adma.201102125

    Article  CAS  Google Scholar 

  42. Jaruwongrungsee K, Tuantranont A, Wanna Y, Wisitsoraat A, Lomas T, and Ieee (2007) Quartz crystal microbalance humidity sensor using electrospun PANI micro/nano dots (2007). In: 7th Ieee Conference on Nanotechnology, Vol 1. pp 3316–3319. doi:10.1109/nano.2007.4601198

  43. Li ZY, Zhang HN, Zheng W, Wang W, Huang HM, Wang C, MacDiarmid AG, Wei Y (2008) Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers. J Am Chem Soc 130(15):5036–5037. doi:10.1021/ja800176s

    Article  CAS  Google Scholar 

  44. Corres JM, Garcia YR, Arregui FJ, Matias IR (2011) Optical fiber humidity sensors using PVdF electrospun nanowebs. IEEE Sens J 11(10):2383–2387. doi:10.1109/jsen.2011.2123881

    Article  Google Scholar 

  45. Liu HQ, Kameoka J, Czaplewski DA, Craighead HG (2004) Polymeric nanowire chemical sensor. Nano Lett 4(4):671–675. doi:10.1021/nl049826f

    Article  CAS  Google Scholar 

  46. Ding B, Kim JH, Miyazaki Y, Shiratori SM (2004) Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH3 detection. Sens Actuators B-Chem 101(3):373–380. doi:10.1016/j.snb.2004.04.008

    Article  CAS  Google Scholar 

  47. Kawasaki H, Ueda T, Suda Y, Ohshima T (2004) Properties of metal doped tungsten oxide thin films for NOx gas sensors grown by PLD method combined with sputtering process. Sens Actuators B-Chem 100(1–2):266–269. doi:10.1016/j.snb.2003.12.052

    Article  CAS  Google Scholar 

  48. Hao R, Yuan JY, Peng Q (2006) Fabrication and sensing behavior of Cr2O3 nanofibers via in situ gelation and electrospinning. Chem Lett 35(11):1248–1249. doi:10.1246/cl.2006.1248

    Article  CAS  Google Scholar 

  49. Kim ID, Rothschild A, Lee BH, Kim DY, Jo SM, Tuller HL (2006) Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers. Nano Lett 6(9):2009–2013. doi:10.1021/nl061197h

    Article  CAS  Google Scholar 

  50. Zhang X, Ji L, Toprakci O, Liang Y, Alcoutlabi M (2011) electrospun nanofiber-based anodes, cathodes, and separators for advanced Lithium–Ion batteries. Polym Rev 51(3):239–264. doi:10.1080/15583724.2011.593390

    Article  CAS  Google Scholar 

  51. Guo Y-G, Hu J-S, Wan L-J (2008) nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20(23):4384–4384 (vol 20, p 2878)

    Article  CAS  Google Scholar 

  52. Kim C, Yang KS, Kojima M, Yoshida K, Kim YJ, Kim YA, Endo M (2006) Fabrication of electrospinning-derived carbon nanofiber webs for the anode material of lithium-ion secondary batteries. Adv Funct Mater 16(18):2393–2397. doi:10.1002/adfm.200500911

    Article  CAS  Google Scholar 

  53. Wang L, Yu Y, Chen PC, Zhang DW, Chen CH (2008) Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries. J Power Sources 183(2):717–723. doi:10.1016/j.jpowsour.2008.05.079

    Article  CAS  Google Scholar 

  54. Wang L, Yu Y, Chen P-C, Chen C-H (2008) Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Mater 58(5):405–408. doi:10.1016/j.scriptamat.2007.10.024

    Article  CAS  Google Scholar 

  55. Fan Q, Whittingham MS (2007) Electrospun manganese oxide nanofibers as anodes for lithium-ion batteries. Electrochem Solid State Lett 10(3):A48–A51. doi:10.1149/1.2422749

    Article  CAS  Google Scholar 

  56. Ding YH, Zhang P, Long ZL, Jiang Y, Huang JN, Yan WJ, Liu G (2008) Synthesis and electrochemical properties of Co3O4 nanofibers as anode materials for lithium-ion batteries. Mater Lett 62(19):3410–3412. doi:10.1016/j.matlet.2008.03.033

    Article  CAS  Google Scholar 

  57. Gu YX, Jian FF, Wang X (2008) Synthesis and characterization of nanostructured Co3O4 fibers used as anode materials for lithium ion batteries. Thin Solid Films 517(2):652–655. doi:10.1016/j.tsf.2008.07.026

    Article  CAS  Google Scholar 

  58. Ban CM, Chernova NA, Whittingham MS (2009) Electrospun nano-vanadium pentoxide cathode. Electrochem Commun 11(3):522–525. doi:10.1016/j.elecom.2008.11.051

    Article  CAS  Google Scholar 

  59. Ji LW, Jung KH, Medford AJ, Zhang XW (2009) Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization. J Mater Chem 19(28):4992–4997. doi:10.1039/b903165k

    Article  CAS  Google Scholar 

  60. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) In-situ encapsulation of nickel particles in electrospun carbon nanofibers and the resultant electrochemical performance. Chem-a Eur J 15(41):10718–10722. doi:10.1002/chem.200902012

    Article  CAS  Google Scholar 

  61. Ji LW, Lin Z, Medford AJ, Zhang XW (2009) Porous carbon nanofibers from electrospun polyacrylonitrile/SiO2 composites as an energy storage material. Carbon 47(14):3346–3354. doi:10.1016/j.carbon.2009.08.002

    Article  CAS  Google Scholar 

  62. Ji LW, Medford AJ, Zhang XW (2009) Porous carbon nanofibers loaded with manganese oxide particles: formation mechanism and electrochemical performance as energy-storage materials. J Mater Chem 19(31):5593–5601. doi:10.1039/b905755b

    Article  CAS  Google Scholar 

  63. Ji LW, Zhang XW (2009) Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem Commun 11(4):795–798. doi:10.1016/j.elecom.2009.01.039

    Article  CAS  Google Scholar 

  64. Ji LW, Zhang XW (2009) Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes. Electrochem Commun 11(6):1146–1149. doi:10.1016/j.elecom.2009.03.042

    Article  CAS  Google Scholar 

  65. Gu YX, Chen DR, Jiao ML (2005) Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries. J Phys Chem B 109(38):17901–17906. doi:10.1021/jp0521813

    Article  CAS  Google Scholar 

  66. Gu YX, Chen DR, Jiao XL, Liu FF (2007) LiCoO2-MgO coaxial fibers: co-electrospun fabrication, characterization and electrochemical properties. J Mater Chem 17(18):1769–1776. doi:10.1039/b614205b

    Article  CAS  Google Scholar 

  67. Toprakci O, Ji LW, Lin Z, Toprakci HAK, Zhang XW (2011) Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries. J Power Sources 196(18):7692–7699. doi:10.1016/j.jpowsour.2011.04.031

    Article  CAS  Google Scholar 

  68. Ding YH, Zhang P, Long ZL, Jiang Y, Xu F (2009) Morphology and electrochemical properties of Al doped LiNi1/3Co1/3Mn1/3O2 nanofibers prepared by electrospinning. J Alloy Compd 487(1–2):507–510. doi:10.1016/j.jallcom.2009.08.002

    Article  CAS  Google Scholar 

  69. Gao K, Hu X, Dai C, Yi T (2006) Crystal structures of electrospun PVDF membranes and its separator application for rechargeable lithium metal cells. Mater Sci Eng, B 131(1–3):100–105. doi:10.1016/j.mseb.2006.03.035

    Article  CAS  Google Scholar 

  70. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M (2007) Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem Solid State Lett 10(7):A159–A162. doi:10.1149/1.2730727

    Article  CAS  Google Scholar 

  71. Ding YH, Di W, Jiang Y, Xu F, Long ZL, Ren FM, Zhang P (2009) The morphological evolution, mechanical properties and ionic conductivities of electrospinning P(VDF-HFP) membranes at various temperatures. Lonics 15(6):731–734. doi:10.1007/s11581-009-0326-4

    CAS  Google Scholar 

  72. Ding YH, Zhang P, Long ZL, Jiang Y, Xu F, Di W (2009) The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J Membr Sci 329(1–2):56–59. doi:10.1016/j.memsci.2008.12.024

    Article  CAS  Google Scholar 

  73. Liang YZ, Ji LW, Guo BK, Lin Z, Yao YF, Li Y, Alcoutlabi M, Qiu YP, Zhang XW (2011) Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators. J Power Sources 196(1):436–441. doi:10.1016/j.jpowsour.2010.06.088

    Article  CAS  Google Scholar 

  74. Bajon R, Balaji S, and Guo SM (2009) Electrospun nafion nanofiber for proton exchange membrane fuel cell application. J Fuel Cell Sci Technol 6(3):031004(1–6) doi:10.1115/1.3005577

    Google Scholar 

  75. Jang WG, Hou J, Byun HS (2011) Preparation and characterization of PVdF nanofiber ion exchange membrane for the PEMFC application. Desalin Water Treat 34(1–3):315–320. doi:10.5004/dwt.2011.2871

    Article  CAS  Google Scholar 

  76. Molla S, Compan V (2011) Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. J Membr Sci 372(1–2):191–200. doi:10.1016/j.memsci.2011.02.001

    Article  CAS  Google Scholar 

  77. Molla S, Compan V, Gimenez E, Blazquez A, Urdanpilleta I (2011) Novel ultrathin composite membranes of Nafion/PVA for PEMFCs. Int J Hydrogen Energy 36(16):9886–9895. doi:10.1016/j.ijhydene.2011.05.074

    Article  CAS  Google Scholar 

  78. Tamura T, Kawakami H (2010) Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett 10(4):1324–1328. doi:10.1021/nl1007079

    Article  CAS  Google Scholar 

  79. Liu W, Wang S, Xiao M, Han D, Meng Y (2012) A proton exchange membrane fabricated from a chemically heterogeneous nonwoven with sandwich structure by the program-controlled co-electrospinning process. Chem Commun 48(28):3415–3417. doi:10.1039/c2cc16952e

    Article  CAS  Google Scholar 

  80. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GE (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Controlled Release 81(1–2):57–64. doi:10.1016/s0168-3659(02)00041-x

    Article  CAS  Google Scholar 

  81. Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Controlled Release 98(1):47–56. doi:10.1016/j.jconrel.2004.04.009

    Article  CAS  Google Scholar 

  82. Feng K, Sun H, Bradley MA, Dupler EJ, Giannobile WV, Ma PX (2010) Novel antibacterial nanofibrous PLLA scaffolds. J Controlled Release 146(3):363–369. doi:10.1016/j.jconrel.2010.05.035

    Article  CAS  Google Scholar 

  83. Xu XL, Yang LX, Xu XY, Wang X, Chen XS, Liang QZ, Zeng J, Jing XB (2005) Ultrafine medicated fibers electrospun from W/O emulsions. J Controlled Release 108(1):33–42. doi:10.1016/j.jconrel.2005.07.021

    Article  CAS  Google Scholar 

  84. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, Jing X (2006) BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Controlled Release 114(3):307–316. doi:10.1016/j.jconrel.2006.05.031

    Article  CAS  Google Scholar 

  85. Xie J, Wang C-H (2006) Electrospun micro- and nanofibers for sustained delivery of paclitaxel to treat C6 glioma in vitro. Pharm Res 23(8):1817–1826. doi:10.1007/s11095-006-9036-z

    Article  CAS  Google Scholar 

  86. Gao H, Gu Y, Ping Q (2007) The implantable 5-fluorouracil-loaded poly (L-lactic acid) fibers prepared by wet-spinning from suspension. J Controlled Release 118(3):325–332. doi:10.1016/j.jconrel.2006.12.028

    Article  CAS  Google Scholar 

  87. Hartman O, Zhang C, Adams EL, Farach-Carson MC, Petrelli NJ, Chase BD, Rabolt JF (2009) Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. Biomacromolecules 10(8):2019–2032. doi:10.1021/bm8012764

    Article  CAS  Google Scholar 

  88. Ignatova MG, Manolova NE, Toshkova RA, Rashkov IB, Gardeva EG, Yossifova LS, Alexandrov MT (2010) Electrospun nanofibrous mats containing quaternized Chitosan and Polylactide with in vitro antitumor activity against HeLa cells. Biomacromolecules 11(6):1633–1645. doi:10.1021/bm100285n

    Article  CAS  Google Scholar 

  89. Kim Y-J, Bae H-I, Kwon OK, Choi M-S (2009) Three-dimensional gastric cancer cell culture using nanofiber scaffold for chemosensitivity test. Int J Biol Macromol 45(1):65–71. doi:10.1016/j.ijbiomac.2009.04.003

    Article  CAS  Google Scholar 

  90. Kumbar SG, Nair LS, Bhattacharyya S, Laurencin CT (2006) Polymeric nanofibers as novel carriers for the delivery of therapeutic molecules. J Nanosci Nanotechnol 6(9–10):2591–2607. doi:10.1166/jnn.2006.462

    Article  CAS  Google Scholar 

  91. Sill TJ, von Recum HA (2008) Electro spinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. doi:10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  92. Venugopal J, Prabhakaran MP, Low S, Choon AT, Deepika G, Dev VRG, Ramakrishna S (2009) Continuous nanostructures for the controlled release of drugs. Curr Pharm Des 15(15):1799–1808

    Article  CAS  Google Scholar 

  93. Park Y, Kang E, Kwon O-J, Hwang T, Park H, Lee JM, Kim JH, Yun C-O (2010) Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Controlled Release 148(1):75–82. doi:10.1016/j.jconrel.2010.06.027

    Article  CAS  Google Scholar 

  94. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Controlled Release 92(3):227–231. doi:10.1016/s0168-3659(03)00372-9

    Article  CAS  Google Scholar 

  95. Zeng J, Yang L, Liang Q, Zhang X, Guan H, Xu X, Chen X, Jing X (2005) Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J Controlled Release 105(1–2):43–51. doi:10.1016/j.jconrel.2005.02.024

    Article  CAS  Google Scholar 

  96. Liang DH, Luu YK, Kim KS, Hsiao BS, Hadjiargyrou M, Chu B (2005) In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res 33(19). doi:E17010.1093/nar/gnil171

  97. Liao IC, Chen S, Liu JB, Leong KW (2009) Sustained viral gene delivery through core-shell fibers. J Controlled Release 139(1):48–55. doi:10.1016/j.jconrel.2009.06.007

    Article  CAS  Google Scholar 

  98. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG (2010) Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Controlled Release 143(1):95–103. doi:10.1016/j.jconrel.2009.12.009

    Article  CAS  Google Scholar 

  99. Langer R, Vacanti J (1993) Tissue engineering. Science 260(5110):920–926. doi:10.1126/science.8493529

    Article  CAS  Google Scholar 

  100. Rosenberg MD (1963) Cell guidance by alterations in monomolecular films. Science 139(3553):411. doi:10.1126/science.139.3553.411

    Article  CAS  Google Scholar 

  101. Ma ZW, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11(1–2):101–109. doi:10.1089/ten.2005.11.101

    Article  Google Scholar 

  102. Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527. doi:10.1016/s0142-9612(00)00120-4

    Article  CAS  Google Scholar 

  103. Moioli EK, Clark PA, Xin X, Lal S, Mao JJ (2007) Matrices and scaffolds for drug delivery in dental, oral and craniofacial tissue engineering. Adv Drug Deliv Rev 59(4–5):308–324. doi:10.1016/j.addr.2007.03.019

    Article  CAS  Google Scholar 

  104. Martins A, Duarte ARC, Faria S, Marques AP, Reis RL, Neves NM (2010) Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 31(22):5875–5885. doi:10.1016/j.biomaterials.2010.04.010

    Article  CAS  Google Scholar 

  105. Wang F, Li Z, Khan M, Tamama K, Kuppusamy P, Wagner WR, Sen CK, Guan J (2010) Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Acta Biomater 6(6):1978–1991. doi:10.1016/j.actbio.2009.12.011

    Article  CAS  Google Scholar 

  106. Loh XJ, Peh P, Liao S, Sng C, Li J (2010) Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. J Controlled Release 143(2):175–182. doi:10.1016/j.jconrel.2009.12.030

    Article  CAS  Google Scholar 

  107. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74. doi:10.1016/j.biomaterials.2010.08.074

    Article  CAS  Google Scholar 

  108. Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4(5):659–668. doi:10.1517/eobt.4.5.659.31057

    Article  CAS  Google Scholar 

  109. Chiu JB, Luu YK, Fang DF, Hsiao BS, Chu B, Hadjiargyrou M (2005) Electrospun nanofibrous scaffolds for biomedical applications. J Biomed Nanotechnol 1(2):115–132. doi:10.1166/jbn.2005.018

    Article  CAS  Google Scholar 

  110. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. doi:10.1089/ten.2006.12.1197

    Article  CAS  Google Scholar 

  111. Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59(14):1413–1433. doi:10.1016/j.addr.2007.04.022

    Article  CAS  Google Scholar 

  112. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412. doi:10.1016/j.addr.2007.04.021

    Article  CAS  Google Scholar 

  113. Martins A, Araujo JV, Reis RL, Neves NM (2007) Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2(6):929–942. doi:10.2217/17435889.2.6.929

    Article  Google Scholar 

  114. Murugan R, Ramakrishna S (2007) Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng 13(8):1845–1866. doi:10.1089/ten.2006.0078

    Article  CAS  Google Scholar 

  115. Sell S, Barnes C, Smith M, McClure M, Madurantakam P, Grant J, McManus M, Bowlin G (2007) Extracellular matrix regenerated: tissue engineering via electrospun biomimetic nanofibers. Polym Int 56(11):1349–1360. doi:10.1002/pi.2344

    Article  CAS  Google Scholar 

  116. Zhang YZ, Su B, Venugopal J, Ramakrishna S, Lim CT (2007) Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers. Int J Nanomed 2(4):623–638

    CAS  Google Scholar 

  117. Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621. doi:10.1016/j.polymer.2008.09.014

    Article  CAS  Google Scholar 

  118. Ashammakhi N, Ndreu A, Nikkola L, Wimpenny I, Yang Y (2008) Advancing tissue engineering by using electrospun nanofibers. Regenerative Medicine 3(4):547–574. doi:10.2217/17460751.3.4.547

    Article  CAS  Google Scholar 

  119. Ayres CE, Jha BS, Meredith H, Bowman JR, Bowlin GL, Henderson SC, Simpson DG (2008) Measuring fiber alignment in electrospun scaffolds: a user’s guide to the 2D fast Fourier transform approach. J Biomaterials Science-Polymer Edition 19(5):603–621. doi:10.1163/156856208784089643

    Article  CAS  Google Scholar 

  120. Fang J, Niu HT, Lin T, Wang XG (2008) Applications of electrospun nanofibers. Chin Sci Bull 53(15):2265–2286. doi:10.1007/s11434-008-0319-0

    Article  CAS  Google Scholar 

  121. Gelain F (2008) Novel opportunities and challenges offered by nanobiomaterials in tissue engineering. Int J Nanomed 3(4):415–424

    Article  CAS  Google Scholar 

  122. Kumbar SG, James R, Nukavarapu SP, Laurencin CT (2008) Electrospun nanofiber scaffolds: engineering soft tissues. Biomed Mater 3(3):034002. doi:10.1088/1748-6041/3/3/034002

    Article  CAS  Google Scholar 

  123. Martins A, Reis RL, Neves NM (2008) Electrospinning: processing technique for tissue engineering scaffolding. Int Mater Rev 53(5):257–274. doi:10.1179/174328008x353547

    Article  CAS  Google Scholar 

  124. Venugopal J, Low S, Choon AT, Ramakrishna S (2008) Interaction of cells and nanofiber scaffolds in tissue engineering. Journal of Biomedical Materials Research Part B-Applied Biomaterials 84B(1):34–48. doi:10.1002/jbm.b.30841

    Article  CAS  Google Scholar 

  125. Burger C, Hsiao BS, and Chu B (2006) Nanofibrous materials and their applications. In: Annual review of materials research, vol 36. Annual Review of Materials Research. Annual Reviews, USA, pp 333–368. doi:10.1146/annurev.matsci.36.011205.123537

  126. Bosworth L, and Downes S (2009) Biocompatible three-dimensional scaffolds for tendon tissue engineering using electrospinning. cellular response to biomaterials. In: Disilvio (ed) Woodhead Publishing in Materials, WOODHEAD PUBL LTD, England, pp 3–27. doi:10.1533/9781845695477.1.3

  127. Focarete ML, Gualandi C, Moroni L (2009) Working with electrospun scaffolds: some practical hints for tissue engineers. In: Moroni L (ed) Electrospun Nanofibers Research: Recent Developments. nanotechnology science and technology. Nova Science Publishers, USA, pp 19–34

    Google Scholar 

  128. Haghi AK (2009) Electrospun biodegradable and biocompatible natural nanofibers: a detailed review. In: Highi AK (ed) Electrospun nanofibers research: recent developments, nanotechnology science and technology. Nova Science Publishers, USA, pp 171–205

    Google Scholar 

  129. Park K, Park WH, Son JS, and Han DK (2009) Biomedical polymer nanofibers for emerging technology. In: Shi D (ed) nanoscience in biomedicine. Springer, Germany, pp 21–42. doi:10.1007/978-3-540-49661-8_2

    Google Scholar 

  130. Powell HM, Boyce ST (2009) Cultured skin substitutes. In: Orgill DP (ed) Biomaterials for Treating Skin Loss. Woodhead Publishing in Materials, Woodhead Publ Ltd, England, p 183–206. doi:10.1533/9781845695545.3.183

  131. Venugopal J, Prabhakaran MP, Zhang YZ, Deepika G, Dev VRG, Low S, Choon AT, Ramakrishna S (2009) nanotechnology: a global challenge in healthcare. In: Haghi AK (ed) Electrospun nanofibers research: recent developments. nanotechnology science and technology. Nova Science Publishers, USA, pp 253–277

    Google Scholar 

  132. Wise SG, Mithieux SM, and Weiss AS (2009) Engineered tropoelastin and elastin-based biomaterials. In: McPherson A (ed) Advances in protein chemistry and structural biology, vol 78. Elsevier, USA, pp 1–24. doi:10.1016/s1876-1623(09)78001-5

  133. Bajgai MP, Aryal S, Kim HY (2010) Smart polymeric electrospun nanofiber for biological applications. In: Li S (ed) Smart Polymer Materials for biomedical applications. materials science and technologies. Nova Science Publishers, USA, pp 119–135

    Google Scholar 

  134. Selim KMK, Kang IK (2010) Preparation of polymer composite nanofibers by electrospinning and their biomedical application. In: Lechkov M (ed) Encyclopedia of polymer composites: properties, performance and applications, polymer science and technology series. Nova Science Publishers, USA, pp 755–806

    Google Scholar 

  135. Teo WE, Kaur S, Ramakrishna S (2010) Electrospun polymer nanocomposite fibers: fabrication and physical properties. In: Tjong SC (ed) Physical properties and applications of polymer nanocomposites. Woodhead, England, pp 616–637

    Chapter  Google Scholar 

  136. Chahine NO, Chao PHG (2011) Micro and nanotechnologies for tissue engineering. In: Burdick JA (ed) Biomaterials for tissue engineering applications: a review of the past and future trends. Springer, US, pp 139–178. doi:10.1007/978-3-7091-0385-2_6

    Google Scholar 

  137. Haghi AK (2011) Practical hints on electrospinning of polymeric nanosized fibers. In: Haghi AK (ed) Modern concepts in nanotechnology research. nanotechnology science and technology. Nova Science Publishers, USA, pp 61–76

    Google Scholar 

  138. James R, Toti US, Laurencin CT, Kumbar SG (2011) Electrospun nanofibrous scaffolds for engineering soft connective tissues. In: Hurst SJ (ed) Biomedical nanotechnology: methods and protocols, vol 726, Methods in Molecular BiologyHumana Press, USA, pp 243–258

    Chapter  Google Scholar 

  139. Rehman IU, Khan AS (2011) Dental regeneration. In: Bosworth LA (ed) Electrospinning for tissue regeneration. Woodhead, England, pp 280–297

    Chapter  Google Scholar 

  140. Simonet M, Driessen-Mol A, Baaijens FPT, Bouten CVC (2011) Heart valve tissue regeneration. In: Bosworth LA (ed) Electrospinning for tissue regeneration. Woodhead, England, pp 202–224

    Chapter  Google Scholar 

  141. Subramanian A, Krishnan UM, Sethuraman S (2011) Skin tissue regeneration. Electrospinning for tissue regeneration. Woodhead, England, pp 298–316

    Book  Google Scholar 

  142. Van der Schueren L, De Clerck K (2011) Nanofibrous textiles in medical applications. Handbook of Medical Textiles, vol 100. Woodhead, England, pp 547–566

    Google Scholar 

  143. Wan JDD, Downes S, Dunne MJ, Cosgrove KE (2011) Cell culture systems for pancreatic research. Electrospinning for tissue regeneration. Woodhead, England, pp 359–371

    Book  Google Scholar 

  144. Wang C, Koh H, Ramakrishna S, Liao S (2011) Nerve tissue regeneration. Electrospinning for tissue regeneration. Woodhead, England, pp 168–201

    Book  Google Scholar 

  145. Wang L, Ryan AJ (2011) Introduction to electrospinning. Electrospinning for tissue regeneration. Woodhead, England, pp 3–33

    Book  Google Scholar 

  146. Jayakumar R, Prabaharan M, Shalumon KT, Chennazhi KP, and Nair SV (2012) Biomedical applications of Polymer/Silver composite nanofibers. In: Jayakumar R, Nair SV (eds) Biomedical applications of polymeric nanofibers, vol 246. Advances in Polymer Science. Springer, Gemany, pp 263–82. doi:10.1007/12_2011_123

    Google Scholar 

  147. Katsanevakis E, Wen XJ, Zhang N (2012) Creating electrospun nanofiber-based biomimetic scaffolds for bone regeneration. In: Jayakumar R, Nair SV (eds) Biomedical applications of polymeric nanofibers, vol 246. Advances in Polymer Science. Springer, Gemany, pp 63–100. doi:10.1007/12_2011_131

    Google Scholar 

  148. Prabaharan M, Jayakumar R, and Nair SV (2012) Electrospun nanofibrous scaffolds-current status and prospects in drug delivery. In: Jayakumar R, Nair SV (eds) Biomedical applications of polymeric nanofibers, vol 246. Advances in Polymer Science. Springer, Gemany, pp 241–262. doi:10.1007/12_2011_125

    Google Scholar 

  149. Supaphol P, Suwantong O, Sangsanoh P, Srinivasan S, Jayakumar R, and Nair SV (2012) Electrospinning of biocompatible polymers and their potentials in biomedical applications. In: Jayakumar R, Nair SV (eds) Biomedical applications of polymeric nanofibers, vol 246. Advances in Polymer Science. Springer, Gemany, pp 213–239, 241–262. doi:10.1007/12_2011_143

    Google Scholar 

  150. Bognitzki M, Hou H, Ishaque M, Frese T, Hellwig M, Schwarte C, Schaper A, Wendorff JH, Greiner A (2000) Polymer, Metal, and hybrid nano- and mesotubes by coating degradable polymer template fibers (TUFT process). Adv Mater 12(9):637–640. doi:10.1002/(sici)1521-4095(200005)12:9<637:aid-adma637>3.0.co;2-w

    Article  CAS  Google Scholar 

  151. Li D, Xia YN (2003) Fabrication of Titania nanofibers by electrospinning. Nano Lett 3(4):555–560. doi:10.1021/nl034039o

    Article  CAS  Google Scholar 

  152. Ki CS, Gang EH, Um IC, Park YH (2007) Nanofibrous membrane of wool keratose/silk fibroin blend for heavy metal ion adsorption. J Membr Sci 302(1–2):20–26. doi:10.1016/j.memsci.2007.06.003

    Article  CAS  Google Scholar 

  153. Vu D, Li ZY, Zhang HN, Wang W, Wang ZJ, Xu XR, Dong B, Wang C (2012) Adsorption of Cu (II) from aqueous solution by anatase mesoporous TiO2 nanofibers prepared via electrospinning. J Colloid Interface Sci 367:429–435. doi:10.1016/j.jcis.2011.09.088

    Article  CAS  Google Scholar 

  154. Kaur S, Kotaki M, Ma Z, Gopal R, Ramakrishna S, Ng SC (2006) Oligosaccharide functionalized nanofibrous membrane. Int J Nanosci 05(01):1–11. doi:10.1142/S0219581X06004206

    Article  CAS  Google Scholar 

  155. Zhang X, Du AJ, Lee P, Sun DD, Leckie JO (2008) TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. J Membr Sci 313(1–2):44–51. doi:10.1016/j.memsci.2007.12.045

    Article  CAS  Google Scholar 

  156. Moradzadegan A, Ranaei-Siadat SO, Ebrahim-Habibi A, Barshan-Tashnizi M, Jalili R, Torabi SF, Khajeh K (2010) Immobilization of acetylcholinesterase in nanofibrous PVA/BSA membranes by electrospinning. Eng Life Sci 10(1):57–64. doi:10.1002/elsc.200900001

    Article  CAS  Google Scholar 

  157. Piperno S, Tse Sum Bui B, Haupt K, Gheber LA (2011) Immobilization of molecularly imprinted polymer nanoparticles in electrospun poly (vinyl alcohol) nanofibers. Langmuir 27(5):1547–1550. doi:10.1021/la1041234

    Article  CAS  Google Scholar 

  158. Kim WJ, Chang JY (2011) Molecularly imprinted polyimide nanofibers prepared by electrospinning. Mater Lett 65(9):1388–1391. doi:10.1016/j.matlet.2011.02.010

    Article  CAS  Google Scholar 

  159. Wang J, Yao HB, He DA, Zhang CL, Yu SH (2012) Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors. ACS Appl Mat Interfaces 4(4):1963–1971. doi:10.1021/am300391j

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Li, Z., Wang, C. (2013). Applications of Electrospun Nanofibers. In: One-Dimensional nanostructures. SpringerBriefs in Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36427-3_4

Download citation

Publish with us

Policies and ethics