Skip to main content

Wood Formation Under Drought Stress and Salinity

  • Chapter
  • First Online:
Cellular Aspects of Wood Formation

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 20))

Abstract

As our environment changes, salinity and drought are becoming increasingly significant abiotic stress factors. Salinity reduces the ability to take up water, and this in turn causes alterations in wood formation; changes that are very often found to correspond closely to those caused by water deficiency. For example, both abiotic stress factors lead to a reduction in the extent of year ring increment, and they also affect xylem element architecture, leading to alterations in the hydraulic properties, as well as the chemical composition of the woody body. The intensity of the response is found to be dependent not only on the intensity of the stress but also on tree species, intraspecific variety, and even on provenances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Nakai T (1999) Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D-Don. Trees Struct Funct 14:124–129

    Google Scholar 

  • Abe H, Nakai T, Utsumi Y, Kagawa A (2003) Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol 23:859–863

    Article  PubMed  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • Baas P, Schweingruber FH (1987) Ecological trends in the wood anatomy of trees, shrubs and climbers from Europe. IAWA Bull 8:245–274

    Google Scholar 

  • Baas P, Werker E, Fahn A (1983) Some ecological trends in vessel characters. IAWA Bull 4: 141–159

    Google Scholar 

  • Bacelar EA, Moutinho-Pereira JM, Goncalves BC, Ferreira HF, Correia CA (2007) Changes in growth, gas exchange, xylem hydraulic properties and water use efficiency of three olive cultivars under contrasting water availability regimes. Environ Exp Bot 60:183–192

    Article  CAS  Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and delta 13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188:1099–1112

    Article  PubMed  CAS  Google Scholar 

  • Carlquist S, Hoekman DA (1985) Ecological wood anatomy of the woody Southern Californian flora. IAWA Bull 6:319–347

    Google Scholar 

  • Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods – the influence of microfibril angle. For Prod J 44:43–48

    Google Scholar 

  • Chang Y, Chen SL, Yin WL, Wang RG, Liu YF, Shi Y, Shen YY, Li Y, Jiang J, Liu Y (2006) Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars. J Integr Plant Biol 48:286–293

    Article  CAS  Google Scholar 

  • Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biol 12:317–333

    Article  PubMed  CAS  Google Scholar 

  • Chen SL, Li JK, Wang SS, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees Struct Funct 15:186–194

    Article  CAS  Google Scholar 

  • Chen SL, Li JK, Wang TH, Wang SS, Polle A, Hüttermann A (2002) Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. J Plant Growth Regul 21:224–233

    Article  CAS  Google Scholar 

  • Chen SL, Li JK, Wang SS, Fritz E, Hüttermann A, Altman A (2003a) Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa. Can J For Res (Revue Canadienne De Recherche Forestiere) 33:967–975

    Article  CAS  Google Scholar 

  • Chen SL, Li JK, Wang TH, Wang SS, Polle A, Hüttermann A (2003b) Gas exchange, xylem ions and abscisic acid response to Na+-salts and Cl-salts in Populus euphratica. Acta Bot Sin 45: 561–566

    CAS  Google Scholar 

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177:608–625

    Article  PubMed  Google Scholar 

  • Clifton NC (1969) Resin pockets in Canterbury Radiata pine G. N Z J For 14:38–49

    Google Scholar 

  • Cocozza C, Giovannelli A, Traversi ML, Castro G, Cherubini P, Tognetti R (2011) Do tree-ring traits reflect different water deficit responses in young poplar clones (Populus × canadensis Monch 'I-214' and P. deltoides 'Dvina')? Trees Struct Funct 25:975–985

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrin E (2004) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees Struct Funct 18:83–92

    Article  Google Scholar 

  • Cown DJ (1973) Resin pockets their occurrence and formation in New-Zealand forests. N Z J For 18:233–251

    Google Scholar 

  • Croteau R, Johnson MA (1985) Biosynthesis of terpenoid wood extractives. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, Orlando, FL, Xvi+679p

    Google Scholar 

  • de Luis M, Novak K, Raventos J, Gricar J, Prislan P, Cufar K (2011) Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different irrigation regimes. For Ecol Manage 262:1630–1638

    Article  Google Scholar 

  • Donaldson LA (2002) Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees. IAWA J 23:161–178

    Google Scholar 

  • Dünisch O, Bauch J (1994) Influence of soil substrate and drought on wood formation of spruce (Picea abies L. karst) under controlled conditions. Holzforschung 48:447–457

    Article  Google Scholar 

  • Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007) A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Glob Chang Biol 13:577–590

    Article  Google Scholar 

  • Eberhardt TL, Han JS, Micales JA, Young RA (1994) Decay resistance in conifer seed cones – role of resin acids as inhibitors of decomposition by white-rot fungi. Holzforschung 48:278–284

    Article  CAS  Google Scholar 

  • Eilmann B, Weber P, Rigling A, Eckstein D (2006) Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23:121–132

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29:1011–1020

    Article  PubMed  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Pannatier EG, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771

    Article  PubMed  CAS  Google Scholar 

  • Escalante-Perez M, Lautner S, Nehls U, Selle A, Teuber M, Schnitzler JP, Teichmann T, Fayyaz P, Hartung W, Polle A, Fromm J, Hedrich R, Ache P (2009) Salt stress affects xylem differentiation of grey poplar (Populus × canescens). Planta 229:299–309

    Article  PubMed  CAS  Google Scholar 

  • Esteban LG, Martin JA, de Palacios P, Fernandez FG (2012) Influence of region of provenance and climate factors on wood anatomical traits of Pinus nigra Arn. subsp salzmannii. Eur J For Res 131:633–645

    Article  Google Scholar 

  • FAO, Food and Agriculture Organization of the United Nations (2007) Dominant type of problem lands. In: Digital Media Series. http://www.fao.org/fileadmin/templates/nr/images/resources/images/Maps/geonetwork/probland.png. Accessed Oct 2012

  • February EC, Stock WD, Bond WJ, Leroux DJ (1995) Relationships between water availability and selected vessel characteristics in Eucalyptus grandis and 2 hybrids. IAWA J 16:269–276

    Google Scholar 

  • Fereres E, Acevedo E, Henderson DW, Hsiao TC (1978) Seasonal-changes in water potential and turgor maintenance in sorghum and maize under water stress. Physiol Plant 44:261–267

    Article  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:S15–S45

    PubMed  CAS  Google Scholar 

  • Frey-Wissling A (1942) Uber die Entstehung von Harztaschen. Schweiz Zeitschr Forstw 93: 101–106

    Google Scholar 

  • Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Ann Bot 110:189–199

    Article  PubMed  Google Scholar 

  • Garcia Esteban L, Antonio Martin J, de Palacios P, Garcia Fernandez F, Lopez R (2010) Adaptive anatomy of Pinus halepensis trees from different Mediterranean environments in Spain. Trees Struct Funct 24:19–30

    Article  Google Scholar 

  • Garcia-Gonzalez I, Eckstein D (2003) Climatic signal of earlywood vessels of oak on a maritime site. Tree Physiol 23:497–504

    Article  Google Scholar 

  • Gea-Izquierdo G, Fonti P, Cherubini P, Martin-Benito D, Chaar H, Canellas I (2012) Xylem hydraulic adjustment and growth response of Quercus canariensis Willd. to climatic variability. Tree Physiol 32:401–413

    Article  PubMed  CAS  Google Scholar 

  • Glerum C (1970) Drought ring formation in conifers. For Sci 16:246–252

    Google Scholar 

  • Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58

    Article  PubMed  CAS  Google Scholar 

  • Hacke U, Sauter JJ (1996) Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Plant Physiol 111:413–417

    PubMed  CAS  Google Scholar 

  • Hacke UG, Sperry JS (2001) Functional and ecological xylem anatomy. Perspect Plant Ecol Evol Syst 4:97–115

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pockman WT, Davis SD, McCulloch KA (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126: 457–461

    Article  Google Scholar 

  • Hacke UG, Sperry JS, Pittermann J (2004) Analysis of circular bordered pit function – II. Gymnosperm tracheids with torus-margo pit membranes. Am J Bot 91:386–400

    Article  PubMed  Google Scholar 

  • Harris JM, Meylan BA (1965) Influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung 19:144–152

    Article  Google Scholar 

  • Hodges JD, Lorio PL (1975) Moisture stress and composition of xylem oleoresin in loblolly-pine. For Sci 21:283–290

    CAS  Google Scholar 

  • Hoffer M, Tardif JC (2009) False rings in jack pine and black spruce trees from eastern Manitoba as indicators of dry summers. Can J For Res (Revue Canadienne De Recherche Forestiere) 39:1722–1736

    Article  Google Scholar 

  • Holtta T, Vesala T, Peramaki M, Nikinmaa E (2002) Relationships between embolism, stem water tension, and diameter changes. J Theor Biol 215:23–38

    Article  PubMed  CAS  Google Scholar 

  • Irvine J, Grace J (1997) Continuous measurements of water tensions in the xylem of trees based on the elastic properties of wood. Planta 202:455–461

    Article  CAS  Google Scholar 

  • Janssonius HH (1950) The vessels in the wood of Javan mangrove trees. Blumea 6:465–469

    Google Scholar 

  • Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A (2012) Salt stress induces the formation of a novel type of ‘pressure wood’ in two Populus species. New Phytol 194:129–141

    Article  PubMed  CAS  Google Scholar 

  • Johnson RH, Young BL, Alstad DN (1997) Responses of ponderosa pine growth and volatile terpene concentrations to manipulation of soil water and sunlight availability. Can J For Res 27:1794–1804

    Article  Google Scholar 

  • Junghans U, Polle A, Duechting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Kaldewey H, Ginkel U, Wawczyniak G (1974) Auxin transport and water stress in pea (Pisum sativum L.). Berichte Der Deutschen Botanischen Gesellschaft 87:563–576

    CAS  Google Scholar 

  • Khamis MH, Hammad HH (2007) Effect of irrigation by saline ground water on the growth of some conifer seedlings: mortality, growth, biomass and physical wood properties, vol 58. Bulletin of Faculty of Agriculture, Cairo University, pp 36–45

    Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K(+) homeostasis and K(+)-dependent xylogenesis. Plant J 32:997–1009

    Article  PubMed  CAS  Google Scholar 

  • Liphschitz N, Waisel Y (1970) The effect of water stresses on radial growth of Populus euphratica D. La-Yaaran 20:53–61

    Google Scholar 

  • Logullo MA, Salleo S, Piaceri EC, Rosso R (1995) Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ 18:661–669

    Article  Google Scholar 

  • Lovisolo C, Schubert A (1998) Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. J Exp Bot 49:693–700

    CAS  Google Scholar 

  • Maherali H, DeLucia EH (2000) Xylem conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates. Tree Physiol 20:859–867

    Article  PubMed  CAS  Google Scholar 

  • Marchand N, Filion L (2012) False rings in the white pine (Pinus strobus) of the Outaouais Hills, Quebec (Canada), as indicators of water stress. Can J For Res (Revue Canadienne De Recherche Forestiere) 42:12–22

    Article  Google Scholar 

  • Mark RE, Gillis PP (1973) Relationship between fiber modulus and S2 angle. Tappi 56:164–167

    CAS  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kuebler K, Bissolli P, Braslavska OG, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12: 1969–1976

    Article  Google Scholar 

  • Meyer RF, Boyer JS (1972) Sensitivity of cell-division and cell elongation to low water potentials in soybean hypocotyls. Planta 108:77

    Article  CAS  Google Scholar 

  • Micales JA, Han JS, Davis JL, Young RA (1994) Chemical composition and fungitoxic activities of pine cone extractives. Biodeterioration research 4. Mycotoxins, wood decay, plant stress, biocorrosion, and general biodeterioration. Plenum, New York, pp 317–332

    Google Scholar 

  • Munne-Bosch S (2007) Aging in perennials. Crit Rev Plant Sci 26:123–138

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  PubMed  CAS  Google Scholar 

  • Nicholls JWP, Waring HD (1977) Effect of environmental-factors on wood characteristics –.4. Irrigation and partial droughting of Pinus radiata. Silvae Genetica 26:107–111

    Google Scholar 

  • Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855

    Article  PubMed  CAS  Google Scholar 

  • Palakit K, Siripattanadilok S, Duangsathaporn K (2012) False ring occurrences and their identification in teak (Tectona grandis) in North-Eastern Thailand. J Trop For Sci 24:387–398

    Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451: 49–52

    Article  PubMed  CAS  Google Scholar 

  • Rigling A, Waldner PO, Forster T, Brasker OU, Pouttu A (2001) Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res (Revue Canadienne De Recherche Forestiere) 31:18–31

    Article  Google Scholar 

  • Rigling A, Braker O, Schneiter G, Schweingruber F (2002) Intra-annual tree-ring parameters indicating differences in drought stress of Pinus sylvestris forests within the Erico-Pinion in the Valais (Switzerland). Plant Ecol 163:105–121

    Article  Google Scholar 

  • Rigling A, Bruhlhart H, Braker OU, Forster T, Schweingruber FH (2003) Effects of irrigation on diameter growth and vertical resin duct production in Pinus sylvestris L. on dry sites in the central Alps, Switzerland. For Ecol Manage 175:285–296

    Article  Google Scholar 

  • Savidge RA (2001) Intrinsic regulation of cambial growth. J Plant Growth Regul 20:52–77

    Article  CAS  Google Scholar 

  • Searson MJ, Thomas DS, Montagu KD, Conroy JP (2004) Wood density and anatomy of water-limited eucalypts. Tree Physiol 24:1295–1302

    Article  PubMed  Google Scholar 

  • Seifert T, Breibeck J, Seifert S, Biber P (2010) Resin pocket occurrence in Norway spruce depending on tree and climate variables. For Ecol Manage 260:302–312

    Article  Google Scholar 

  • Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133: 651–669

    Article  PubMed  CAS  Google Scholar 

  • Sheldrake AR (1979) Effects of osmotic-stress on polar auxin transport in Avena mesocotyl sections. Planta 145:113–117

    Article  CAS  Google Scholar 

  • Sheriff DW, Whitehead D (1984) Photosynthesis and wood structure in Pinus radiata D-Don during dehydration and immediately after rewatering. Plant Cell Environ 7:53–62

    Article  Google Scholar 

  • Sperry JS, Saliendra NZ (1994) Intra-plant and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ 17:1233–1241

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93:1490–1500

    Article  PubMed  Google Scholar 

  • Sterck FJ, Zweifel R, Sass-Klaassen U, Chowdhury Q (2008) Persisting soil drought reduces leaf specific conductivity in Scots pine (Pinus sylvestris) and pubescent oak (Quercus pubescens). Tree Physiol 28:529–536

    Article  PubMed  Google Scholar 

  • Stiller V (2009) Soil salinity and drought alter wood density and vulnerability to xylem cavitation of baldcypress (Taxodium distichum (L.) Rich.) seedlings. Environ Exp Bot 67:164–171

    Article  CAS  Google Scholar 

  • Teichmann T, Bolu-Arianto WH, Olbrich A, Langenfeld-Heyser R, Goebel C, Grzeganek P, Feussner I, Haensch R, Polle A (2008) GH3: GUS reflects cell-specific developmental patterns and stress-induced changes in wood anatomy in the poplar stem. Tree Physiol 28:1305–1315

    Article  PubMed  CAS  Google Scholar 

  • Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115: 577–585

    PubMed  CAS  Google Scholar 

  • Turtola S, Manninen AM, Rikala R, Kainulainen P (2003) Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. J Chem Ecol 29:1981–1995

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap., 2nd edn, Springer series in wood science. Springer, Berlin

    Book  Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    Article  PubMed  CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    Article  PubMed  CAS  Google Scholar 

  • Villar-Salvador P, Castro-Diez P, Perez-Rontome C, Montserrat-Marti G (1997) Stem xylem features in three Quercus (Fagaceae) species along a climatic gradient in NE Spain. Trees Struct Funct 12:90–96

    Google Scholar 

  • Watson AJ, Dadswell HE (1964) Influence of fibre morphology on paper properties. 3. Length: diameter (L/D) ratio. 4. Micellar spiral angle, vol 17. APPITA, Melbourne, pp 146–156

    Google Scholar 

  • Whitmore FW, Zahner R (1967) Evidence for a direct effect of water stress on tracheid cell wall metabolism in pine. For Sci 13:397

    Google Scholar 

  • Wimmer R, Downes GM, Evans R (2002) Temporal variation of microfibril angle in Eucalyptus nitens grown in different irrigation regimes. Tree Physiol 22:449–457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Center for a Sustainable University, Universität Hamburg, Germany, providing a fellowship in the Postdoctoral Research Group ‘Sustainable Future’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Lautner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lautner, S. (2013). Wood Formation Under Drought Stress and Salinity. In: Fromm, J. (eds) Cellular Aspects of Wood Formation. Plant Cell Monographs, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36491-4_7

Download citation

Publish with us

Policies and ethics