Skip to main content

Simulation Software for Flow of Fluid with Suspended Point Particles in Complex Domains: Application to Matrix Diffusion

  • Conference paper
Applied Parallel and Scientific Computing (PARA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7782))

Included in the following conference series:

Abstract

Matrix diffusion is a phenomenon in which tracer particles convected along a flow channel can diffuse into porous walls of the channel, and it causes a delay and broadening of the breakthrough curve of a tracer pulse. Analytical and numerical methods exist for modeling matrix diffusion, but there are still some features of this phenomenon, which are difficult to address using traditional approaches. To this end we propose to use the lattice-Boltzmann method with point-like tracer particles. These particles move in a continuous space, are advected by the flow, and there is a stochastic force causing them to diffuse. This approach can be extended to include particle-particle and particle-wall interactions of the tracer. Numerical results that can also be considered as validation of the LBM approach, are reported. As the reference we use recently-derived analytical solutions for the breakthrough curve of the tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foster, S.: The Chalk groundwater tritium anomaly – A possible explanation. Journal of Hydrology 25(1-2), 159–165 (1975)

    Article  MathSciNet  Google Scholar 

  2. Neretnieks, I.: Diffusion in the rock matrix: An important factor in radionuclide retardation? Journal of Geophysical Research 85(B8), 4379–4397 (1980)

    Article  Google Scholar 

  3. Bodin, J., Delay, F., de Marsily, G.: Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrogeology Journal 11(4), 418–433 (2003)

    Article  Google Scholar 

  4. Barten, W., Robinson, P.: Contaminant transport in fracture networks with heterogeneous rock matrices: The PICNIC code. Technical Report NTB 01-03, NAGRA (February 2001) ISSN: 1015-2636

    Google Scholar 

  5. McDermott, C., Walsh, R., Mettier, R., Kosakowski, G., Kolditz, O.: Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Computational Geosciences 13(3), 349–361 (2009)

    Article  MATH  Google Scholar 

  6. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

    MATH  Google Scholar 

  7. Ma, Y., Bhattacharya, A., Kuksenok, O., Perchak, D., Balazs, A.C.: Modeling the transport of nanoparticle-filled binary fluids through micropores. Langmuir 28(31), 11410–11421 (2012)

    Article  Google Scholar 

  8. Kekäläinen, P., Voutilainen, M., Poteri, A., Hölttä, P., Hautojärvi, A., Timonen, J.: Solutions to and validation of matrix-diffusion models. Transport in Porous Media 87, 125–149 (2011)

    Article  Google Scholar 

  9. Frisch, U., Hasslacher, B., Pomeau, Y.: Lattice-gas automata for the Navier-Stokes equation. Physical Review Letters 56(14), 1505–1508 (1986)

    Article  Google Scholar 

  10. Qian, Y.H., D’Humiéres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhysics Letters 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  11. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  MATH  Google Scholar 

  12. Mattila, K., Hyväluoma, J., Rossi, T., Aspnäs, M., Westerholm, J.: An efficient swap algorithm for the lattice Boltzmann method. Computer Physics Communications 176(3), 200–210 (2007)

    Article  MATH  Google Scholar 

  13. Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics 104(5), 1191–1251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Verberg, R., Yeomans, J.M., Balazs, A.C.: Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets. The Journal of Chemical Physics 123(22), 224706 (2005)

    Article  Google Scholar 

  15. Szymczak, P., Ladd, A.J.C.: Boundary conditions for stochastic solutions of the convection-diffusion equation. Physical Review E 68(3), 036704 (2003)

    Article  MathSciNet  Google Scholar 

  16. Vidal, D., Roy, R., Bertrand, F.: On improving the performance of large parallel lattice Boltzmann flow simulations in heterogeneous porous media. Computers & Fluids 39(2), 324–337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Starikovičius, V., Čiegis, R., Iliev, O.: A parallel solver for the design of oil filters. Mathematical Modelling and Analysis 16(2), 326–341 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Toivanen, J.I., Mattila, K., Hyväluoma, J., Kekäläinen, P., Puurtinen, T., Timonen, J. (2013). Simulation Software for Flow of Fluid with Suspended Point Particles in Complex Domains: Application to Matrix Diffusion. In: Manninen, P., Öster, P. (eds) Applied Parallel and Scientific Computing. PARA 2012. Lecture Notes in Computer Science, vol 7782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36803-5_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36803-5_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36802-8

  • Online ISBN: 978-3-642-36803-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics