Skip to main content

The Imprinted Brain: How Genes Set the Balance Between Autism and Psychosis

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The imprinted brain theory proposes that autism spectrum disorder (ASD) represents a paternal bias in the expression of imprinted genes. This is reflected in a preference for mechanistic cognition and in the corresponding mentalistic deficits symptomatic of ASD. Psychotic spectrum disorder (PSD) would correspondingly result from an imbalance in favor of maternal and/or X-chromosome gene expression. If differences in imprinted gene expression were reflected locally in the human brain, as mouse models and other evidence suggests they are, ASD would represent not so much an “extreme male brain” as an extreme paternal one, with PSD correspondingly representing an extreme maternal brain. To the extent that copy number variation resembles imprinting and aneuploidy in nullifying or multiplying the expression of particular genes, it has been found to conform to the diametric model of mental illness peculiar to the imprinted brain theory. The fact that non-genetic factors like nutrition in pregnancy can mimic and/or interact with imprinted gene expression suggests that the theory might even be able to explain the notable effect of maternal starvation on risk of PSD—not to mention a part of the “autism epidemic” of modern affluent societies. Finally, the theory suggests that normality represents balanced cognition and that genius is an extraordinary extension of cognitive configuration in both mentalistic and mechanistic directions. Were it to prove correct, the imprinted brain theory would represent one of the biggest single advances in our understanding of the mind and of mental illness that has ever taken place and would revolutionize psychiatric diagnosis, prevention, and treatment—not to mention our understanding of epigenetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADCYAP1R1:

PACAP receptor

AG:

Androgenetic

AS:

Angelman syndrome

ASD:

Autism spectrum disorder

BPD:

Borderline personality disorder

BWS:

Beckwith-Wiedemann syndrome

CMV:

Cytomegalovirus

CNV:

Copy number variation

MDD:

Major depressive disorder

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PG:

Parthenogenetic

PSD:

Psychotic spectrum disorder

PTSD:

Posttraumatic stress disorder

PWS:

Prader-Willi syndrome

RORA:

Retinoic acid-related orphan receptor-alpha

SRS:

Silver-Russell syndrome

TPJ:

Temporoparietal junction

References

  • Aitken KJ (2008) Intersubjectivity, affective neuroscience, and the neurobiology of autistic spectrum disorders: a systematic review. Keio J Med 57:15–36

    Article  PubMed  CAS  Google Scholar 

  • Allen ND, Logan K, Lally G, Drage JD, Norris ML, Keverne B (1995) Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc Natl Acad Sci U S A 92:10782–10786

    Article  PubMed  CAS  Google Scholar 

  • Anderson GM, Jacobs-Stannard A, Chawarska K, Volkmar FR, Kliman HJ (2007) Placental trophoblast inclusions in autism spectrum disorder. Biol Psychiatry 6:487–491

    Article  Google Scholar 

  • Angelman H (1965) ‘Puppet’ children: a report on three cases. Dev Med Child Neurol 7:681–688

    Article  Google Scholar 

  • Badcock CR (1995) Pre-printed gift tags. The Times Higher Education Supplement, p 30. 16 June

    Google Scholar 

  • Badcock CR (1999) Genetic conflict: a new biological foundation for freud’s fundamental findings. Psychother Rev 1:116–122

    Google Scholar 

  • Badcock CR (2000) Evolutionary psychology: a critical introduction. Polity Press, Cambridge

    Google Scholar 

  • Badcock CR (2004) Mentalism and mechanism: the twin modes of human cognition. In: Crawford C, Salmon C (eds) Evolutionary psychology, public policy, and personal decisions. Lawrence Erlbaum Associates, Mahwah, pp 99–116

    Google Scholar 

  • Badcock CR (2008) An evolutionary theory of mind and of mental illness: genetic conflict and the mentalistic continuum. In: Crawford C, Krebs D (eds) Foundations of evolutionary psychology. Lawrence Erlbaum Associates, New York, pp 431–450

    Google Scholar 

  • Badcock CR (2009) The imprinted brain: how genes set the balance between autism and psychosis. Jessica Kingsley, London/Philadelphia

    Google Scholar 

  • Badcock CR, Crespi B (2006) Imbalanced genomic imprinting in brain development: an evolutionary basis for the etiology of autism. J Evol Biol 19:1007–1032

    Article  PubMed  CAS  Google Scholar 

  • Badcock CR, Crespi B (2008) Battle of the sexes may set the brain. Nature 454:1054–1055

    Article  PubMed  CAS  Google Scholar 

  • Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the special needs and autism project (SNAP). Lancet 368:210–215

    Article  PubMed  Google Scholar 

  • Bara BG, Ciaramidaro A, Walter H, Adenzato M (2011) Intentional minds: a philosophical analysis of intention tested through fMRI experiments involving people with schizophrenia, people with autism, and healthy individuals. Front Hum Neurosci 5. doi:10.3389/fnhum.2011.00007

  • Barlow D (1995) Gametic imprinting in mammals. Science 270:1610–1613

    Article  PubMed  CAS  Google Scholar 

  • Baron-Cohen S (2002) The extreme male brain theory of autism. Trends Cogn Sci 6:248–254

    Article  PubMed  Google Scholar 

  • Baron-Cohen S (2005) The empathizing system. In: Ellis BJ, Bjorklund DF (eds) Origins of the social mind. The Guilford Press, New York/London, pp 468–492

    Google Scholar 

  • Baron-Cohen S, Wheelwright S, Stott C, Bolton P, Goodyer I (1997) Is there a link between engineering and autism? Autism 1:101–109

    Article  Google Scholar 

  • Baron-Cohen S, Knickmeyer RC, Belmonte MK (2005) Sex differences in the brain: implications for explaining autism. Science 310:819–823

    Article  PubMed  CAS  Google Scholar 

  • Baron-Cohen S, Ashwin E, Ashwin C, Tavassoli T, Chakrabarti B (2009) Talent in autism: hyper-systemizing, hyper-attention to detail and sensory hypersensitivity. Philos Trans R Soc Lond B Biol Sci 364:1377–1383

    Article  PubMed  Google Scholar 

  • Bonati MT, Russo S, Finelli P, Valsecchi MR, Cogliati F, Cavalleri F, Roberts W, Elia M, Larizza L (2007) Evaluation of autism traits in Angelman syndrome: a resource to unfold autism genes. Neurogenetics 8:169–178

    Article  PubMed  CAS  Google Scholar 

  • Breslau N (2001) The epidemiology of posttraumatic stress disorder. J Clin Psychiatry 62:16–22

    PubMed  Google Scholar 

  • Brosnan M, Ashwin C, Walker I, Donaghue J (2010) Can an ‘extreme female brain’ be characterised in terms of psychosis? Pers Indiv Differ 49:738–742

    Article  Google Scholar 

  • Brown WM (2011) The parental antagonism theory of language evolution: preliminary evidence for the proposal. Hum Biol 83:213–245

    Article  PubMed  Google Scholar 

  • Brown WM, Consedine NS (2004) Just how happy is the happy puppet? An emotion signaling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome. Med Hypotheses 63:377–385

    Article  PubMed  Google Scholar 

  • Chorney MJ, Chorney K, Seese N, Owen MJ, Daniels J, McGiffin P, Thompson LA, Detterman DK, Benbow C, Lubinski D, Eley T, Plomin R (1998) A quantitative trait locus associated with cognitive ability in children. Psychol Sci 9:1–7

    Article  Google Scholar 

  • Crespi B (2007) Sly FOXP2: genomic conflict in the evolution of language. Trends Ecol Evol 22:174–175

    Article  PubMed  Google Scholar 

  • Crespi B (2008) Genomic imprinting in the development and evolution of psychotic spectrum conditions. Biol Rev Camb Philos Soc 83:441–493

    PubMed  Google Scholar 

  • Crespi B, Badcock C (2008) Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci 31:241–261

    PubMed  Google Scholar 

  • Crespi B, Summers K, Dorus S (2007) Adaptive evolution of genes underlying schizophrenia. P Roy Soc Lond B Bio Sci 274:2801–2810

    Article  CAS  Google Scholar 

  • Crespi B, Stead P, Elliot M (2009a) Comparative genomics of autism and schizophrenia. Proc Natl Acad Sci U S A 107(Suppl 1):1736–1741

    PubMed  Google Scholar 

  • Crespi B, Summers K, Dorus S (2009b) Genomic sister-disorders of neurodevelopment: an evolutionary approach. Evol Appl 2:81–100

    Article  Google Scholar 

  • Crow TJ (1997) Is schizophrenia the price that homo sapiens pays for language? Schizophr Res 28:127–141

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1989) The selfish gene, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • De Chiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64:849–859

    Article  Google Scholar 

  • Der G, Gupta S, Murray RM (1990) Is schizophrenia disappearing? Lancet 335:513–516

    Article  PubMed  CAS  Google Scholar 

  • Eggermann T, Schönherr N, Meyer E, Obermann C, Mavany M, Eggermann K, Rank MB, Wollmann HA (2005) Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. J Med Genet 43:615–616

    Article  PubMed  Google Scholar 

  • Fertuck EA, Jekal A, Song I, Wyman B, Morris MC, Wilson ST, Brodsky BS, Stanley B (2009) Enhanced ‘reading the mind in the eyes’ in borderline personality disorder compared to healthy controls. Psychol Med 39:1979–1988

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Holland C, Subramaniam K, Vinogradov S (2009) Neuroplasticity-based cognitive training in schizophrenia: an interim report on the effects 6 months later. Schizophr Bull 36:869–879

    Article  PubMed  Google Scholar 

  • Franzen N, Hagenhoff M, Baer N, Schmidt A, Mier D, Sammer G, Gallhofer B, Kirsch P, Lis S (2010) Superior ‘theory of mind’ in borderline personality disorder: an analysis of interaction behavior in a virtual trust game. Psychiatry Res 187:224–233

    Article  PubMed  Google Scholar 

  • Gillberg CL (1992) The Emanuel Miller Memorial Lecture 1991. Autism and autistic-like conditions: subclasses among disorders of empathy. J Child Psychol Psychiatry 33:813–842

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497

    Article  PubMed  CAS  Google Scholar 

  • Goos LM, Silverman I (2006) The inheritance of cognitive skills: does genomic imprinting play a role? J Neurogenet 20:19–40

    Article  PubMed  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  PubMed  CAS  Google Scholar 

  • Gur RC, Gunning-Dixon F, Bilker WB, Gur RE (2002) Sex difference in temporo-limbic and frontal brain volumes of healthy adults. Cereb Cortex 12:998–1003

    Article  PubMed  Google Scholar 

  • Gur RE, Kohler C, Turetsky BI, Siegel SJ, Kanes SJ, Bilker WB, Brennan AR, Gur RC (2004) A sexually dimorphic ratio of orbitofrontal to amygdala volume is altered in schizophrenia. Biol Psychiatry 55:512–517

    Article  PubMed  Google Scholar 

  • Haig D (2002) Genomic imprinting and kinship. Rutgers University Press, New Brunswick

    Google Scholar 

  • Haig D (2004) Genomic imprinting and kinship: how good is the evidence? Annu Rev Genet 38:553–585

    Article  PubMed  CAS  Google Scholar 

  • Haig D (2006) Intragenomic politics. Cytogenet Genome Res 113:68–74

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1996) Narrow roads of gene land: evolution of social behaviour. WH Freeman/Spektrum, Oxford

    Google Scholar 

  • Hannah J, Hayward BE, Sheridan E, Bonthron DT (2002) A global disorder of imprinting in the human female germ line. Nature 416:539–542

    Article  Google Scholar 

  • Happé F, Frith U (2009) Autism and talent. Philos Trans R Soc Lond B Biol Sci 364:1345–1480

    Article  Google Scholar 

  • Heijmansa BT, Tobia EW, Stein AD, Putter H, Blauwd GJ, Sussere ES, Slagbooma PE, Lumeye LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  Google Scholar 

  • Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greensway LR, Whitman BY, Greenbergy F (1993) Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics 91:398–402

    PubMed  CAS  Google Scholar 

  • Horrobin DF (1998) Schizophrenia: the illness that made us human. Med Hypotheses 50:269–288

    Article  PubMed  CAS  Google Scholar 

  • Ingudomnukul E, Baron-Cohen S, Wheelwright S, Knickmeyer R (2007) Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm Behav 51:597–604

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb M (1995) Epigenetic inheritance and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Jones D (2008) Killer instincts. Nature 451:512–515

    Article  PubMed  CAS  Google Scholar 

  • Kaminsky ZA, Tang T, Wang S-C, Ptak C, Oh GHT, Wong AHC, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41:240–245

    Article  PubMed  CAS  Google Scholar 

  • Kent L, Bowdin S, Kirby GA, Cooper WN, Maher ER (2008) Beckwith-Wiedemann syndrome: a behavioral phenotype-genotype study. Am J Med Genet B Neuropsychiatr Genet 147B:1295–1297

    Article  PubMed  Google Scholar 

  • Keverne EB, Fundele R, Narasimha M, Barton SC, Surani MA (1996) Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res Dev Brain Res 92:91–100

    Article  PubMed  CAS  Google Scholar 

  • Killian JK, Nolan CM, Wylie AA, Li T, Vu TH, Hoffman AR, Jirtle RL (2001) Divergent evolution in M6P/IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 10:1721–1728

    Article  PubMed  CAS  Google Scholar 

  • Knickmeyer R, Baron-Cohen S, Raggatt P, Taylor K (2004) Foetal testosterone, social relationships, and restricted interests in children. J Child Psychol Psychiatry 46:198–210

    Article  Google Scholar 

  • Kravariti E, Toulopoulou T, Mapua-Filbey F, Shultze W, Sham P, Murray RM, McDonald C (2006) Intellectual asymmetry and genetic liability in first-degree relatives of probands with schizophrenia. Br J Psychiatry 188:186–187

    Article  PubMed  Google Scholar 

  • Lathe R (2006) Autism, brain, and environment. Jessica Kingsley Publishers, London/Philadelphia

    Google Scholar 

  • LeDoux J (1996) The emotional brain: the mysterious underpinnings of emotional life. Simon & Schuster, New York

    Google Scholar 

  • MacLean PD (1996) Limbic system. In: Beaumont JG, Kenealy P, Rogers MCJ (eds) The Blackwell dictionary of neuropsychology. Blackwell, Oxford

    Google Scholar 

  • Maestro S, Muratori F, Cavallaro MC, Pei F, Stern D, Golse B, Palacio-Espasa F (2002) Attentional skills during the first 6 months of age in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry 41:1239–1245

    Article  PubMed  Google Scholar 

  • McNamara P, McLaren D, Smith D, Brown A, Stickgold R (2005) A “Jekyll and Hyde” within: aggressive versus friendly interactions in REM and Non-REM dreams. Psychol Sci 16:130–136

    Article  PubMed  Google Scholar 

  • Mendrek A (2007) Reversal of normal cerebral sexual dimorphism in schizophrenia: evidence and speculations. Med Hypotheses 69:896–902

    Article  PubMed  Google Scholar 

  • Mills JL, Hediger ML, Molloy CA, Chrousos GP, Manning-Courtney P, Yu KF, Brasington M, England LJ (2007) Elevated levels of growth-related hormones in autism and autism spectrum disorder. Clin Endocrinol 67:230–237

    Article  CAS  Google Scholar 

  • Milner KM, Craig EE, Thompson RJ, Veltman MW, Thomas NS, Roberts S, Bellamy M, Curran SR, Sporikou CM, Bolton PF (2005) Prader-Will syndrome: intellectual abilities and behavioural features by genetic subtype. J Child Psychol Psychiatry 46:1089–1096

    Article  PubMed  Google Scholar 

  • Newton G (2001) The case of the biparental mole. Wellcome News, pp 18–19

    Google Scholar 

  • Nguyen A, Rauch TA, Pfeifer GP, Hu VW (2010) Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J 24:3036–3051

    Article  PubMed  CAS  Google Scholar 

  • Nicholls RD, Saitoh S, Horsthemke B (1998) Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 14:194–200

    Article  PubMed  CAS  Google Scholar 

  • Raison CL, Lowry CA, Rook GA (2010) Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry 67:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Surani A (1997) Genomic imprinting. IRL Press, Oxford

    Google Scholar 

  • Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, Norrholm SD, Kilaru V, Smith AK, Myers AJ, Ramirez M, Engel A, Hammack SE, Toufexis D, Braas KM, Binder EB, May V (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470:492–497

    Article  PubMed  CAS  Google Scholar 

  • Rodier P (2000) The early origins of autism. Sci Am 282:56–63

    Article  PubMed  CAS  Google Scholar 

  • Russell-Smith SN, Maybery MT, Bayliss DM (2010) Are the autism and positive schizotypy spectra diametrically opposed in local versus global processing? J Autism Dev Disord 40:968–977

    Article  PubMed  Google Scholar 

  • Sarachana T, Xu M, Wu R-C, Hu VW (2011) Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate rora, a novel candidate gene for autism. PLoS One 6:e17116

    Article  PubMed  CAS  Google Scholar 

  • Shinawi M, Liu P, Kang SH, Shen J, Belmont JW, Scott DA, Probst FJ, Craigen WJ, Graham BH, Pursley A, Clark G, Lee J, Proud M, Stocco A, Rodriguez DL, Kozel BA, Sparagana S, Roeder ER, McGrew SG, Kurczynski TW, Allison LJ, Amato S, Savage S, Patel A, Stankiewicz P, Beaudet AL, Cheung SW, Lupski JR (2010) Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet 47:332–341

    Article  PubMed  CAS  Google Scholar 

  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  PubMed  CAS  Google Scholar 

  • Steffenburg S, Gillberg CL, Steffenburg U, Kyllerman M (1996) Autism in Angelman syndrome: a population-based study. Pediatr Neurol 14:131–136

    Article  PubMed  CAS  Google Scholar 

  • Sugie Y, Sugie H, Fukuda T, Ito M (2005) Neonatal factors in infants with autistic disorder and typically developing infants. Autism 9:487–494

    Article  PubMed  Google Scholar 

  • Susser E, St. Clair D, He L (2008) Latent effects of prenatal malnutrition on adult health: the example of schizophrenia. Ann NY Acad Sci 1136:185–192

    Article  PubMed  Google Scholar 

  • Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 10:27–39

    Article  PubMed  CAS  Google Scholar 

  • Toulopoulou T, Mapua-Filbey F, Quraishi S, Kravariti E, Morris RG, McDonald C, Walshe M, Bramon E, Murray RM (2006) Cognitive performance in presumed obligate carriers for psychosis. Br J Psychiatry 187:284–285

    Article  Google Scholar 

  • Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual selection and the descent of man 1871–1971. Heinemann, London, pp 136–179

    Google Scholar 

  • Trivers R (1974) Parent-offspring conflict. Amer Zool 14:249–264

    Google Scholar 

  • Veltman MW, Thompson RJ, Roberts SE, Thomas NS, Whittington J, Bolton PF (2004) Prader-Willi syndrome – a study comparing deletion and uniparental disomy cases with reference to autism spectrum disorders. Eur Child Adolesc Psychiatry 13:42–50

    Article  PubMed  Google Scholar 

  • Veltman MWM, Craig EE, Bolton PF (2005) Autism spectrum disorders in Prader-Willi and Angelman syndromes: a systematic review. Psychiatr Genet 15:243–254

    Article  PubMed  Google Scholar 

  • Walter H, Ciaramidaro A, Adenzato M, Vasic N, Ardito RB, Erk S, Bara BG (2009) Dysfunction of the social brain in schizophrenia is modulated by intention type: an fMRI study. Soc Cogn Affect Neurosci 4:166–176

    Article  PubMed  Google Scholar 

  • Ward PW (1993) Birth weight and economic growth. University of Chicago Press, Chicago/London

    Google Scholar 

  • Webster JP, Lamberton PHL, Donnelly CA, Torrey EF (2006) Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii’s ability to alter host behaviour. P Roy Soc Lond B Bio Sci 273:1023–1030

    Article  CAS  Google Scholar 

  • Whittington J, Holland T (2004) Prader-Willi syndrome: development and manifestations. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wicks S, Hjern A, Gunnell D, Lewis G, Dalman C (2005) Social adversity in childhood and the risk of developing psychosis: a national cohort study. Am J Psychiatry 162:1652–1657

    Article  PubMed  Google Scholar 

  • Woogh C (2001) Is schizophrenia on the decline in Canada? Can J Psychiatry 46:61–67

    PubMed  CAS  Google Scholar 

  • Yolken RH, Torrey EF (2008) Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry 13:470–479

    Article  PubMed  CAS  Google Scholar 

  • Zhai J, Zhang Q, Cheng L, Chen M, Wang K, Liu Y, Deng X, Chen X, Shen Q, Xu Z, Ji F, Liu C, Dong Q, Chen C, Li J (2011) Risk variants in the S100B gene, associated with elevated S100B levels, are also associated with visuospatial disability of schizophrenia. Behav Brain Res 217:363–368

    Article  PubMed  CAS  Google Scholar 

  • Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 23:143–152

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

With thanks and acknowledgements to Ahmad Abu-Akel, Will Brown, Bernard Crespi, David Haig, and Randy Jirtle.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Badcock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Badcock, C. (2013). The Imprinted Brain: How Genes Set the Balance Between Autism and Psychosis. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36827-1_5

Download citation

Publish with us

Policies and ethics