Skip to main content

Abstract

This chapter has the aim to give a complete overview on the first analog front-ends, describing some circuit and system solutions for the design of electronic interfaces suitable for resistive sensors showing different variation ranges: small, as in dedicated-application GMR sensors; wide, especially referred to GMR sensing devices whose baseline is unknown. After a description of the main interface parameters, the authors present several solutions, most of which do not require any calibration. These solutions are different according to the entity of resistive sensor variations, can utilize either AC or DC excitation voltages for the employed sensor and are developed in Voltage-Mode (VM, which considers the use of either the Operational Amplifier (OA) or the Operational Transconductance Amplifier (OTA) as main active block) as well as in Current-Mode (CM) approach (being in this case the Second Generation Current Conveyor (CCII) the active device). The described interfaces can be easily fabricated both as prototype boards, for a fast characterization, and as integrated circuits, also using modern microelectronics design techniques, in a standard CMOS technology with Low Voltage (LV) and Low Power (LP) characteristics, especially when designed for portable applications and instrumentation. Moreover, thanks to their reduced sizes in terms of chip area, the proposed solutions are suitable for being used for sensor arrays applications, where a number of sensors is employed, as in portable systems, to detect different environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huijsing, J.-H.: Integrated smart sensors. Sensors and Actuators A 30, 167–174 (1992)

    Article  Google Scholar 

  2. Meijer, G.C.M.: Smart sensor systems. Wiley (2008)

    Google Scholar 

  3. De Marcellis, A., Ferri, G.: Analog Circuits and systems for Voltage-Mode and Current-Mode sensor interfacing applications. Springer (2011)

    Google Scholar 

  4. Falconi, C., Martinelli, E., Di Natale, C., D’Amico, A., Maloberti, F., Malcovati, P., Baschirotto, A., Stornelli, V., Ferri, G.: Electronic Interfaces. Sensors and Actuators B 121, 295–329 (2007)

    Article  Google Scholar 

  5. Middelhock, S., Audet, S.A., French, P.: Silicon sensors. Academic Press, London (2000)

    Google Scholar 

  6. Fraden, J.: Handbook of modern sensors: physics, design and applications, 3rd edn. Springer (2003)

    Google Scholar 

  7. Hirota, E., Sakakima, H., Inomata, K.: Giant magneto-resistance devices. Springer (2002)

    Google Scholar 

  8. Han, S.J., Xu, L., Yu, H., Wilson, R.J., White, R.L., Pourmand, N., Wang, S.X.: CMOS integrated DNA microarray based on GMR sensors. In: International Electron Devices Meeting (IEDM 2006), pp. 719–723 (2006)

    Google Scholar 

  9. Piedade, M.S., Sousa, L., Almeida, T.M., Germano, J., d’Andrade da Costa, B., Lemos, J.M., Freitas, P.P., Ferreira, H.A., Cardoso, F.A.: A new hand-held microsystem architecture for biological analysis. IEEE Transactions on Circuits And Systems I: regular papers 53, 2384–2395 (2006)

    Article  Google Scholar 

  10. Hartmann, U.: Magnetic Multilayers and Giant Magnetoresistance: Fundamentals and Industrial. Applications Springer Series in Surface Sciences, vol. 37 (2000)

    Google Scholar 

  11. Roldán, A., Reig, C., Cubells-Beltrán, M.D., Roldán, J.B., Ramírez, D., Cardoso, S., Freitas, P.P.: Analytical compact modeling of GMR based current sensors: Application to power measurement at the IC level. Solid-State Electronics 54, 1606–1612 (2010)

    Article  Google Scholar 

  12. Cubells-Beltrán, M.D., Reig, C., Martos, J., Torres, J., Soret, J.: Limitations of magnetoresistive current sensors in industrial electronics applications. International Review of Electrical Engineering 6, 423–429 (2011)

    Google Scholar 

  13. Freitas, P.P., Ferreira, R., Cardoso, S., Cardoso, F.: Magnetoresistive sensors. J. Phys.: Condens. Matter 19, 165221 (2007)

    Article  Google Scholar 

  14. Reig, C., Cubells-Beltrán, M.D., Muñoz, D.R.: Magnetic field sensors based on giant magnetoresistance (GMR) Technology: Applications in Electrical Current Sensing. Sensors 9, 7919–7942 (2009)

    Article  Google Scholar 

  15. Heinrich, B., Bland, J.A.C.: Ultrathin magnetic structures. Application of Nanomagnetism IV. Springer (2005)

    Google Scholar 

  16. Germano, J., Martins, V.C., Cardoso, F.A., Almeida, T.M., Sousa, L., Freitas, P.P., Piedade, M.S.: A portable and autonomous magnetic detection platform for biosensing. Sensors 9, 4119–4137 (2009)

    Article  Google Scholar 

  17. Blagojevic, M., Kayal, M., Gervais, M., De Venuto, D.: SOI Hall-sensor front end for energy measurement. IEEE Sensors Journal 6, 1016–1021 (2006)

    Article  Google Scholar 

  18. Edelstein, A.S., Burnette, J., Fischer, G.A., Cheng, S.F., Egelhoff, J.W.F., Pong, P.W.T., McMichael, R.D., Nowak, E.R.: Advances in magnetometry through miniaturization. Journal of Vacuum Sci & Tech A: Vacuum, Surfaces, and Films 26, 757–762 (2008)

    Article  Google Scholar 

  19. Sedra, A., Smith, K.C.: Microelectronic Circuits, 5th edn. Oxford University Press (2007)

    Google Scholar 

  20. Hogervorst, R., Huijsing, J.H.: Design of low-voltage low-power operational amplifier cells. Kluwer Academic Publishers, Boston (1996)

    Book  Google Scholar 

  21. Maloberti, F.: Analog design for CMOS VLSI systems. Kluwer Academic Publishers (2001)

    Google Scholar 

  22. Palumbo, G., Palmisano, S., Pennisi, S.: CMOS current amplifiers. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  23. Ferri, G., Guerrini, N.: Low Voltage, Low Power CMOS Current Conveyors. Kluwer (2003)

    Google Scholar 

  24. Pertijs, M.A.P., Aita, A.L., Makinwa, K.A.A., Huijsing, J.H.: Voltage calibration of smart temperature sensors. In: Proc. of IEEE Sensors, Lecce, Italy, pp. 756–759 (2008)

    Google Scholar 

  25. Muñoz, D.R., Sánchez, J., Casans, S., Castro, E., Reig, C., Navarro, A.E.: Temperature compensation of Wheatstone bridge magneto-resistive sensors based on generalized impedance converter with input reference current. Revi. Sci. Instrum. 77, 034980 (2006)

    Google Scholar 

  26. Ferri, G., Stornelli, V., Fragnoli, M.: An integrated improved CCII topology for resistive sensor application. Analog Integrated Circuits and Signal Processing 48, 247–250 (2006)

    Article  Google Scholar 

  27. De Marcellis, A., Di Carlo, C., Ferri, G., Stornelli, V.: A CCII-based wide frequency range square waveform generator. International Journal of Circuit theory and Applications 41, 1–13 (2013)

    Google Scholar 

  28. De Marcellis, A., Ferri, G., Mantenuto, P.: A Novel OA−based oscillating circuit for uncalibrated capacitive and resistive sensor interfacing applications. In: Proc. of IMCS 2012, Nuremberg, pp. 1707–1709 (2012)

    Google Scholar 

  29. Mantenuto, P., De Marcellis, A., Ferri, G.: Uncalibrated analog bridge-based interface for wide-range resistive sensor estimation. IEEE Sensor Journal 12, 1413–1414 (2012)

    Article  Google Scholar 

  30. De Marcellis, A., Ferri, G., Stornelli, V., Depari, A., Flammini, A., Marioli, A.: A novel Op-Amp based front-end for high valued resistive sensors. In: Proc. of 13th AISEM Conference, Rome, Italy, pp. 540–544 (2008)

    Google Scholar 

  31. Ferri, G., De Marcellis, A., Di Carlo, C., Stornelli, V., Flammini, A., Depari, A., Marioli, D., Sisinni, E.: A CCII-based low-voltage low-power readout circuit for DC-excited resistive gas sensors. IEEE Sensors Journal 9, 2035–2041 (2009)

    Article  Google Scholar 

  32. Del Re, S., De Marcellis, A., Ferri, G., Stornelli, V.: Low voltage integrated astable multivibrator based on a single CCII. In: Proc. of PRIME, Bordeaux, pp. 177–180 (2007)

    Google Scholar 

  33. Ferri, G., Stornelli, V., De Marcellis, A., Di Carlo, C., Flammini, A., Depari, A., Marioli, D.: Uncalibrated Current-Mode oscillator for resistive gas sensor integrable applications. In: Proceedings of ISOEN, Brescia, Italy, pp. 297–300 (2009)

    Google Scholar 

  34. Ferri, G., De Marcellis, A., Di Carlo, C., Stornelli, V., Flammini, A., Depari, A., Nader, J.: A single-chip integrated interfacing circuit for wide-range resistive gas sensor arrays. Sensors and Actuators B 143, 218–225 (2009)

    Article  Google Scholar 

  35. De Marcellis, A., Depari, A., Ferri, G., Flammini, A., Sisinni, E.: A CMOS integrated low-voltage low-power time-controlled interface for chemical resistive sensors. Sensors and Actuators B 179, 313–318 (2013)

    Article  Google Scholar 

  36. Barrettino, D., Graf, M., Taschini, S., Hafizovic, S., Hagleitner, C., Hierlemann, A.: CMOS monolithic metal–oxide gas sensor microsystems. IEEE Sensors Journal 6, 276–286 (2006)

    Article  Google Scholar 

  37. Sebastia, J.P., Lluch, J.A., Vizcaino, J.R.L.: Signal conditioning for GMR magnetic sensors applied to traffic speed monitoring GMR sensors. Sensors and Actuators A 137, 230–235 (2007)

    Article  Google Scholar 

  38. Pannetier-Lecoeur, M., Fermon, C., Giraud, A.: GMR based integrated non-contact voltage sensor for fuel cell monitoring. In: Proc. of IEEE International Conference on Sensing Technology, pp. 101–105 (2011)

    Google Scholar 

  39. Cubells-Beltran, M.D., Reig, C., Munoz, D.R., De Freitas, S.I.P.C., De Freitas, P.J.P.: Full Wheatstone bridge spin-valve based sensors for IC currents monitoring. IEEE Sensors Journal 9, 1756–1762 (2009)

    Article  Google Scholar 

  40. Gardner, J., Yinon, J.: Electronic Noses and Sensors for the Detection of Explosives. Springer (2004)

    Google Scholar 

  41. Yang, W.: Sensor Array. InTech (2012)

    Google Scholar 

  42. Naidu, P.S.: Sensor array signal processing. CRC Press (2009)

    Google Scholar 

  43. Robogiannakis, P., Chatzandroulis, S., Tsamis, C.: Integrated circuit interface for metal oxide chemical sensor arrays. Sensors and Actuators A 132, 252–257 (2007)

    Article  Google Scholar 

  44. Guo, B., Bermak, A., Chan, P.C.H., Yan, G.Z.: A monolithic integrated 4x4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid-State Electronics 51, 69–76 (2007)

    Article  Google Scholar 

  45. Liu, H., Zhang, Y.F., Liu, Y.W., Jin, M.H.: Measurement errors in the scanning of resistive sensor arrays. Sensors and Actuators A 163, 198–204 (2010)

    Article  Google Scholar 

  46. Saxena, R.S., Bhan, R.K., Aggrawal, A.: Reducing readout Complexity of Large Resistive Sensor Arrays. IEEE Sensors Journal 8, 1862–1863 (2008)

    Article  Google Scholar 

  47. Saxena, R.S., Bhan, R.K., Aggrawal, A.: A new discrete circuit for readout of resistive sensor arrays. Sensors and Actuators A 149, 93–99 (2009)

    Article  Google Scholar 

  48. Martinelli, E., Falconi, C., D’Amico, A., Di Natale, C.: Feature extraction chemical sensors in phase space. Sensors and Actuators B 95, 132–139 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Marcellis .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

De Marcellis, A., Ferri, G., Mantenuto, P. (2013). Resistive Sensor Interfacing. In: Giant Magnetoresistance (GMR) Sensors. Smart Sensors, Measurement and Instrumentation, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37172-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37172-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37171-4

  • Online ISBN: 978-3-642-37172-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics