Skip to main content

Fitness Landscape-Based Characterisation of Nature-Inspired Algorithms

  • Conference paper
Adaptive and Natural Computing Algorithms (ICANNGA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7824))

Included in the following conference series:

Abstract

A significant challenge in nature-inspired algorithmics is the identification of specific characteristics of problems that make them harder (or easier) to solve using specific methods. The hope is that, by identifying these characteristics, we may more easily predict which algorithms are best-suited to problems sharing certain features. Here, we approach this problem using fitness landscape analysis. Techniques already exist for measuring the “difficulty” of specific landscapes, but these are often designed solely with evolutionary algorithms in mind, and are generally specific to discrete optimisation. In this paper we develop an approach for comparing a wide range of continuous optimisation algorithms. Using a fitness landscape generation technique, we compare six different nature-inspired algorithms and identify which methods perform best on landscapes exhibiting specific features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1), 67–82 (1997)

    Article  Google Scholar 

  2. Woodward, J.: Why classifying search algorithms is essential. In: 2010 International Conference on Progress in Informatics and Computing (2010)

    Google Scholar 

  3. Morgan, R., Gallagher, M.: When does dependency modelling help? Using a randomized landscape generator to compare algorithms in terms of problem structure. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 94–103. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Gallagher, M., Yuan, B.: A general-purpose tunable landscape generator. IEEE Transactions on Evolutionary Computation 10(5), 590–603 (2006)

    Article  Google Scholar 

  5. Rönkkönen, J., Li, X., Kyrki, V., Lampinen, J.: A generator for multimodal test functions with multiple global optima. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 239–248. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Jin, Y., Sendhoff, B.: Constructing dynamic optimization test problems using the multi-objective optimization concept. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 525–536. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Michalewicz, Z., Deb, K., Schmidt, M.: Test-case generator for nonlinear continuous parameter optimization techniques. IEEE Transactions on Evolutionary Computation 4(3), 197–215 (2000)

    Article  Google Scholar 

  8. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192 (1995)

    Google Scholar 

  9. Chiong, R.: Nature-inspired algorithms for optimisation. Springer (2009)

    Google Scholar 

  10. Zhang, Q.: On the convergence of a class of estimation of distribution algorithms. IEEE Transactions on Computation 8(2), 127–136 (2004)

    Article  Google Scholar 

  11. He, J., Yao, X.: From an individual to a population: An analysis of the first hitting time of population-based evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 495–511 (2002)

    Article  Google Scholar 

  12. Barr, R., Golden, B., Kelly, J.: Designing and reporting on computational experiments with heuristic methods. Journal of Heuristics 1, 9–32 (1995)

    Article  MATH  Google Scholar 

  13. Hooker, J.: Testing heuristics: we have it all wrong. Journal of Heuristics (1995)

    Google Scholar 

  14. Merz, P.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Evolutionary Computation 4(4), 337–352 (2000)

    Article  MathSciNet  Google Scholar 

  15. Tavares, J., Pereira, F.B., Costa, E.: Multidimensional knapsack problem: a fitness landscape analysis. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics 38(3), 604–616 (2008)

    Article  Google Scholar 

  16. Uludag, G., Sima Uyar, A.: Fitness landscape analysis of differential evolution algorithms. In: Fifth International Conference on Soft Computing, Computing with Words and Perceptions in System Analysis, Decision and Control, ICSCCW 2009, pp. 1–4 (2009)

    Google Scholar 

  17. McGeoch, C.: Toward an experimental method for algorithm simulation. INFORMS Journal on Computing 8(1), 1–15 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Eiben, A.: A critical note on experimental research methodology in EC. In: Proceedings of the 2002 Congress on Evolutionary Computation, pp. 582–587. IEEE (2002)

    Google Scholar 

  19. Brabazon, A., O’Neill, M.: Biologically inspired algorithms for financial modelling. Springer (2006)

    Google Scholar 

  20. Passino, K.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Systems Magazine 22(3), 52–67 (2002)

    Article  MathSciNet  Google Scholar 

  21. Pham, D., Ghanbarzadeh, A., Koc, E.: The bees algorithm – a novel tool for complex optimisation problems. In: Pham, D., Eldukhri, E., Soroka, A. (eds.) Intelligent Production Machines and Systems, pp. 454–459 (2006)

    Google Scholar 

  22. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the Neural Networks, pp. 1942–1948 (1995)

    Google Scholar 

  23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley (1989)

    Google Scholar 

  24. Bäck, T., Schwefel, H.-P.: An overview of evolutionary algorithms for parameter optimization. Evolutionary Computation 1(1), 1–23 (1993)

    Article  Google Scholar 

  25. Geem, Z., Kim, J.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  26. Brownlee, J.: Clever Algorithms: Nature-Inspired Programming Recipes. Lulu (2011), http://www.cleveralgorithms.com

  27. Horn, J., Goldberg, D.: Genetic algorithm difficulty and the modality of fitness landscapes. In: Foundations of Genetic Algorithms, vol. 3 (1994)

    Google Scholar 

  28. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: 2009 IEEE Congress on Evolutionary Computation, pp. 1440–1447. IEEE (May 2009)

    Google Scholar 

  29. Hendtlass, T.: Particle swarm optimisation and high dimensional problem spaces. In: 2009 IEEE Congress on Evolutionary Computation, CEC 2009. IEEE (May 1994)

    Google Scholar 

  30. Kukkonen, S., Lampinen, J.: GDE3: The third evolution step of generalized differential evolution. In: 2005 IEEE Congress on Evolutionary Computation, pp. 443–450 (2005)

    Google Scholar 

  31. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies. Natural Computing 1, 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Elbeltagi, E., Hegazy, T., Grierson, D.: Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 19(1), 43–53 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crossley, M., Nisbet, A., Amos, M. (2013). Fitness Landscape-Based Characterisation of Nature-Inspired Algorithms. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37213-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37212-4

  • Online ISBN: 978-3-642-37213-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics